IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31194-7.html
   My bibliography  Save this article

The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin

Author

Listed:
  • Julia Truch

    (University of Oxford)

  • Damien J. Downes

    (University of Oxford)

  • Caroline Scott

    (University of Oxford)

  • E. Ravza Gür

    (University of Oxford
    University of Oxford)

  • Jelena M. Telenius

    (University of Oxford
    University of Oxford)

  • Emmanouela Repapi

    (University of Oxford)

  • Ron Schwessinger

    (University of Oxford
    University of Oxford)

  • Matthew Gosden

    (University of Oxford)

  • Jill M. Brown

    (University of Oxford)

  • Stephen Taylor

    (University of Oxford)

  • Pak Leng Cheong

    (University of Oxford)

  • Jim R. Hughes

    (University of Oxford
    University of Oxford)

  • Douglas R. Higgs

    (University of Oxford)

  • Richard J. Gibbons

    (University of Oxford)

Abstract

The chromatin remodeller ATRX interacts with the histone chaperone DAXX to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats, many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. Here, using an improved protocol for chromatin immunoprecipitation, we show that ATRX also binds active regulatory elements in euchromatin. Mutations in ATRX lead to perturbation of gene expression associated with a reduction in chromatin accessibility, histone modification, transcription factor binding and deposition of H3.3 at the sequences to which it normally binds. In erythroid cells where downregulation of α-globin expression is a hallmark of ATR-X syndrome, perturbation of chromatin accessibility and gene expression occurs in only a subset of cells. The stochastic nature of this process suggests that ATRX acts as a general facilitator of cell specific transcriptional and epigenetic programmes, both in heterochromatin and euchromatin.

Suggested Citation

  • Julia Truch & Damien J. Downes & Caroline Scott & E. Ravza Gür & Jelena M. Telenius & Emmanouela Repapi & Ron Schwessinger & Matthew Gosden & Jill M. Brown & Stephen Taylor & Pak Leng Cheong & Jim R. , 2022. "The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31194-7
    DOI: 10.1038/s41467-022-31194-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31194-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31194-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Ernst & Pouya Kheradpour & Tarjei S. Mikkelsen & Noam Shoresh & Lucas D. Ward & Charles B. Epstein & Xiaolan Zhang & Li Wang & Robbyn Issner & Michael Coyne & Manching Ku & Timothy Durham & Mano, 2011. "Mapping and analysis of chromatin state dynamics in nine human cell types," Nature, Nature, vol. 473(7345), pages 43-49, May.
    2. Carla Danussi & Promita Bose & Prasanna T. Parthasarathy & Pedro C. Silberman & John S. Van Arnam & Mark Vitucci & Oliver Y. Tang & Adriana Heguy & Yuxiang Wang & Timothy A. Chan & Gregory J. Riggins , 2018. "Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    3. David Clynes & Clare Jelinska & Barbara Xella & Helena Ayyub & Caroline Scott & Matthew Mitson & Stephen Taylor & Douglas R. Higgs & Richard J. Gibbons, 2015. "Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitish Gulve & Chenhe Su & Zhong Deng & Samantha S. Soldan & Olga Vladimirova & Jayamanna Wickramasinghe & Hongwu Zheng & Andrew V. Kossenkov & Paul. M. Lieberman, 2022. "DAXX-ATRX regulation of p53 chromatin binding and DNA damage response," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy K. Turkalo & Antonio Maffia & Johannes J. Schabort & Samuel G. Regalado & Mital Bhakta & Marco Blanchette & Diana C. J. Spierings & Peter M. Lansdorp & Dirk Hockemeyer, 2023. "A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Courtney A Lovejoy & Kaori Takai & Michael S Huh & David J Picketts & Titia de Lange, 2020. "ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity," PLOS Biology, Public Library of Science, vol. 18(1), pages 1-28, January.
    3. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    5. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Haoxi Chai & Harianto Tjong & Peng Li & Wei Liao & Ping Wang & Chee Hong Wong & Chew Yee Ngan & Warren J. Leonard & Chia-Lin Wei & Yijun Ruan, 2023. "ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Zhangyuan Pan & Yuelin Yao & Hongwei Yin & Zexi Cai & Ying Wang & Lijing Bai & Colin Kern & Michelle Halstead & Ganrea Chanthavixay & Nares Trakooljul & Klaus Wimmers & Goutam Sahana & Guosheng Su & M, 2021. "Pig genome functional annotation enhances the biological interpretation of complex traits and human disease," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Maurizio Mangolini & Alba Maiques-Diaz & Stella Charalampopoulou & Elena Gerhard-Hartmann & Johannes Bloehdorn & Andrew Moore & Giorgia Giachetti & Junyan Lu & Valar Nila Roamio Franklin & Chandra Sek, 2022. "Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Carlos Rivera & Hun-Goo Lee & Anna Lappala & Danni Wang & Verónica Noches & Montserrat Olivares-Costa & Marcela Sjöberg-Herrera & Jeannie T. Lee & María Estela Andrés, 2022. "Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Noah Dukler & Mehreen R. Mughal & Ritika Ramani & Yi-Fei Huang & Adam Siepel, 2022. "Extreme purifying selection against point mutations in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ting Shen & Ting Ni & Jiaxuan Chen & Haitao Chen & Xiaopin Ma & Guangwen Cao & Tianzhi Wu & Haisheng Xie & Bin Zhou & Gang Wei & Hexige Saiyin & Suqin Shen & Peng Yu & Qianyi Xiao & Hui Liu & Yuzheng , 2022. "An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zhaoyun Ding & Ting Cai & Jupei Tang & Hanxiao Sun & Xinyi Qi & Yunpeng Zhang & Yan Ji & Liyun Yuan & Huidan Chang & Yanhui Ma & Hong Zhou & Li Li & Huiming Sheng & Ju Qiu, 2022. "Setd2 supports GATA3+ST2+ thymic-derived Treg cells and suppresses intestinal inflammation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    17. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Mijeong Kim & Shili Lin, 2020. "Characterization of histone modification patterns and prediction of novel promoters using functional principal component analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-16, May.
    19. Xintao Qiu & Nadia Boufaied & Tarek Hallal & Avery Feit & Anna Polo & Adrienne M. Luoma & Walaa Alahmadi & Janie Larocque & Giorgia Zadra & Yingtian Xie & Shengqing Gu & Qin Tang & Yi Zhang & Sudeepa , 2022. "MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. M S Vijayabaskar & Debbie K Goode & Nadine Obier & Monika Lichtinger & Amber M L Emmett & Fatin N Zainul Abidin & Nisar Shar & Rebecca Hannah & Salam A Assi & Michael Lie-A-Ling & Berthold Gottgens & , 2019. "Identification of gene specific cis-regulatory elements during differentiation of mouse embryonic stem cells: An integrative approach using high-throughput datasets," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-29, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31194-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.