IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28813-8.html
   My bibliography  Save this article

Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana

Author

Listed:
  • Mamoru Matsumura

    (Nagoya University)

  • Mika Nomoto

    (Nagoya University
    Nagoya University)

  • Tomotaka Itaya

    (Nagoya University
    Nagoya University)

  • Yuri Aratani

    (Saitama University)

  • Mizuki Iwamoto

    (University of Tsukuba)

  • Takakazu Matsuura

    (Okayama University)

  • Yuki Hayashi

    (Nagoya University)

  • Tsuyoshi Mori

    (Nagoya University)

  • Michael J. Skelly

    (University of Edinburgh)

  • Yoshiharu Y. Yamamoto

    (Gifu University)

  • Toshinori Kinoshita

    (Nagoya University
    Nagoya University)

  • Izumi C. Mori

    (Okayama University)

  • Takamasa Suzuki

    (Chubu University)

  • Shigeyuki Betsuyaku

    (University of Tsukuba
    University of Tsukuba)

  • Steven H. Spoel

    (University of Edinburgh)

  • Masatsugu Toyota

    (Saitama University)

  • Yasuomi Tada

    (Nagoya University
    Nagoya University)

Abstract

Perception of pathogen-derived ligands by corresponding host receptors is a pivotal strategy in eukaryotic innate immunity. In plants, this is complemented by circadian anticipation of infection timing, promoting basal resistance even in the absence of pathogen threat. Here, we report that trichomes, hair-like structures on the epidermis, directly sense external mechanical forces, including raindrops, to anticipate pathogen infections in Arabidopsis thaliana. Exposure of leaf surfaces to mechanical stimuli initiates the concentric propagation of intercellular calcium waves away from trichomes to induce defence-related genes. Propagating calcium waves enable effective immunity against pathogenic microbes through the CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) and mitogen-activated protein kinases. We propose an early layer of plant immunity in which trichomes function as mechanosensory cells that detect potential risks.

Suggested Citation

  • Mamoru Matsumura & Mika Nomoto & Tomotaka Itaya & Yuri Aratani & Mizuki Iwamoto & Takakazu Matsuura & Yuki Hayashi & Tsuyoshi Mori & Michael J. Skelly & Yoshiharu Y. Yamamoto & Toshinori Kinoshita & I, 2022. "Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28813-8
    DOI: 10.1038/s41467-022-28813-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28813-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28813-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie Boudsocq & Matthew R. Willmann & Matthew McCormack & Horim Lee & Libo Shan & Ping He & Jenifer Bush & Shu-Hua Cheng & Jen Sheen, 2010. "Differential innate immune signalling via Ca2+ sensor protein kinases," Nature, Nature, vol. 464(7287), pages 418-422, March.
    2. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    3. Xiu-Fang Xin & Kinya Nomura & Kyaw Aung & André C. Velásquez & Jian Yao & Freddy Boutrot & Jeff H. Chang & Cyril Zipfel & Sheng Yang He, 2016. "Bacteria establish an aqueous living space in plants crucial for virulence," Nature, Nature, vol. 539(7630), pages 524-529, November.
    4. Liqun Du & Gul S. Ali & Kayla A. Simons & Jingguo Hou & Tianbao Yang & A. S. N. Reddy & B. W. Poovaiah, 2009. "Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity," Nature, Nature, vol. 457(7233), pages 1154-1158, February.
    5. Musoki Mwimba & Sargis Karapetyan & Lijing Liu & Jorge Marqués & Erin M. McGinnis & Nicolas E. Buchler & Xinnian Dong, 2018. "Daily humidity oscillation regulates the circadian clock to influence plant physiology," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Mian Zhou & Wei Wang & Sargis Karapetyan & Musoki Mwimba & Jorge Marqués & Nicolas E. Buchler & Xinnian Dong, 2015. "Redox rhythm reinforces the circadian clock to gate immune response," Nature, Nature, vol. 523(7561), pages 472-476, July.
    7. Cyril Zipfel & Silke Robatzek & Lionel Navarro & Edward J. Oakeley & Jonathan D. G. Jones & Georg Felix & Thomas Boller, 2004. "Bacterial disease resistance in Arabidopsis through flagellin perception," Nature, Nature, vol. 428(6984), pages 764-767, April.
    8. Wei Wang & Jinyoung Yang Barnaby & Yasuomi Tada & Hairi Li & Mahmut Tör & Daniela Caldelari & Dae-un Lee & Xiang-Dong Fu & Xinnian Dong, 2011. "Timing of plant immune responses by a central circadian regulator," Nature, Nature, vol. 470(7332), pages 110-114, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaële Lajeunesse & Charles Roussin-Léveillée & Sophie Boutin & Élodie Fortin & Isabelle Laforest-Lapointe & Peter Moffett, 2023. "Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Deepak D. Bhandari & Dae Kwan Ko & Sang-Jin Kim & Kinya Nomura & Sheng Yang He & Federica Brandizzi, 2023. "Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Nkulu Kabange Rolly & Qari Muhammad Imran & Hyun-Ho Kim & Nay Chi Aye & Adil Hussain & Kyung-Min Kim & Byung-Wook Yun, 2020. "Pathogen-Induced Expression of OsDHODH1 Suggests Positive Regulation of Basal Defense Against Xanthomonas oryzae pv. oryzae in Rice," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
    5. Frederickson Entila & Xiaowei Han & Akira Mine & Paul Schulze-Lefert & Kenichi Tsuda, 2024. "Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    9. Norliza Abu-Bakar & Nor Mustaiqazah Juri & Ros Azrinawati Hana Abu-Bakar & Mohd Zulfadli Sohaime & Rafidah Badrun & Johari Sarip & Mohd Azhar Hassan & Khairulmazmi Ahmad, 2021. "Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 11(1), pages 1-9, March.
    10. Xin Tong & Jia-Jia Zhao & Ya-Lan Feng & Jing-Ze Zou & Jian Ye & Junfeng Liu & Chenggui Han & Dawei Li & Xian-Bing Wang, 2023. "A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    14. Jincai Qiu & Yongshan Chen & Ying Feng & Xiaofeng Li & Jinghua Xu & Jinping Jiang, 2023. "Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    15. Arsheed H. Sheikh & Iosif Zacharia & Alonso J. Pardal & Ana Dominguez-Ferreras & Daniela J. Sueldo & Jung-Gun Kim & Alexi Balmuth & Jose R. Gutierrez & Brendon F. Conlan & Najeeb Ullah & Olivia M. Nip, 2023. "Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    18. Zhengying Luo & Xin Hu & Zhuandi Wu & Xinlong Liu & Caiwen Wu & Qianchun Zeng, 2022. "Identification and Expression Profiling of TGA Transcription Factor Genes in Sugarcane Reveals the Roles in Response to Sporisorium scitamineum Infection," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    19. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Veronika DUMALASOVÁ & Leona SVOBODOVÁ & Alena HANZALOVÁ, 2012. "Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 48(3), pages 108-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28813-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.