IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06692-2.html
   My bibliography  Save this article

Daily humidity oscillation regulates the circadian clock to influence plant physiology

Author

Listed:
  • Musoki Mwimba

    (Duke University
    Duke University)

  • Sargis Karapetyan

    (Duke University
    Duke University)

  • Lijing Liu

    (Duke University
    Duke University)

  • Jorge Marqués

    (Duke University
    Duke University)

  • Erin M. McGinnis

    (Duke University
    Duke University)

  • Nicolas E. Buchler

    (Duke University
    Duke University
    North Carolina State University)

  • Xinnian Dong

    (Duke University
    Duke University)

Abstract

Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.

Suggested Citation

  • Musoki Mwimba & Sargis Karapetyan & Lijing Liu & Jorge Marqués & Erin M. McGinnis & Nicolas E. Buchler & Xinnian Dong, 2018. "Daily humidity oscillation regulates the circadian clock to influence plant physiology," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06692-2
    DOI: 10.1038/s41467-018-06692-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06692-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06692-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Mamoru Matsumura & Mika Nomoto & Tomotaka Itaya & Yuri Aratani & Mizuki Iwamoto & Takakazu Matsuura & Yuki Hayashi & Tsuyoshi Mori & Michael J. Skelly & Yoshiharu Y. Yamamoto & Toshinori Kinoshita & I, 2022. "Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06692-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.