IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28225-8.html
   My bibliography  Save this article

Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy

Author

Listed:
  • Najmeh Soltanmohammadi

    (University Hospital and University of Cologne
    University of Cologne)

  • Siyao Wang

    (University Hospital and University of Cologne
    University of Cologne)

  • Björn Schumacher

    (University Hospital and University of Cologne
    University of Cologne)

Abstract

Inheritance of stable and euploid genomes is a prerequisite for species maintenance. The DNA damage response in germ cells controls the integrity of heritable genomes. Whether and how somatic stress responses impact the quality control of germline genomes has remained unclear. Here, we show that PMK-1/p38-mediated stress signaling in intestinal cells is required for germ cell apoptosis amid ionizing radiation (IR)-induced or meiotic DNA double strand breaks (DSBs) in C. elegans. We demonstrate that intestinal PMK-1/p38 signaling regulates the germ cell death in response to environmental stress. The PMK-1/p38 target SYSM-1 is secreted from the intestine into the germline to trigger apoptosis of meiotic pachytene cells. Compromised PMK-1/p38 signaling in intestinal cells leads to stress-induced aneuploidy in the consequent generation. Our data suggest that somatic stress surveillance controls heritable genome integrity and euploidy.

Suggested Citation

  • Najmeh Soltanmohammadi & Siyao Wang & Björn Schumacher, 2022. "Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28225-8
    DOI: 10.1038/s41467-022-28225-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28225-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28225-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ding Xue & H. Robert Horvitz, 1997. "Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor," Nature, Nature, vol. 390(6657), pages 305-308, November.
    2. Ataman Sendoel & Ines Kohler & Christof Fellmann & Scott W. Lowe & Michael O. Hengartner, 2010. "HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase," Nature, Nature, vol. 465(7298), pages 577-583, June.
    3. Maria A. Ermolaeva & Alexandra Segref & Alexander Dakhovnik & Hui-Ling Ou & Jennifer I. Schneider & Olaf Utermöhlen & Thorsten Hoppe & Björn Schumacher, 2013. "DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance," Nature, Nature, vol. 501(7467), pages 416-420, September.
    4. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    5. Shawn Ahmed & Jonathan Hodgkin, 2000. "MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans," Nature, Nature, vol. 403(6766), pages 159-164, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Halh Al-Serori & Franziska Ferk & Michael Kundi & Andrea Bileck & Christopher Gerner & Miroslav Mišík & Armen Nersesyan & Monika Waldherr & Manuel Murbach & Tamara T Lah & Christel Herold-Mende & Andr, 2018. "Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
    4. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    5. Liankui Zhou & Liu Jiang & Lan Li & Chengchuan Ma & Peixue Xia & Wanqiu Ding & Ying Liu, 2024. "A germline-to-soma signal triggers an age-related decline of mitochondrial stress response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Alice Rouan & Melanie Pousse & Nadir Djerbi & Barbara Porro & Guillaume Bourdin & Quentin Carradec & Benjamin CC. Hume & Julie Poulain & Julie Lê-Hoang & Eric Armstrong & Sylvain Agostini & Guillem Sa, 2023. "Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    8. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Sidrah Shah & Alison Cheung & Mikolaj Kutka & Matin Sheriff & Stergios Boussios, 2022. "Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes," IJERPH, MDPI, vol. 19(13), pages 1-14, July.
    11. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jessica D. Tischler & Hiroshi Tsuchida & Rosevalentine Bosire & Tommy T. Oda & Ana Park & Richard O. Adeyemi, 2024. "FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Lin-Lin Zhou & Tao Zhang & Yun Xue & Chuan Yue & Yihui Pan & Pengyu Wang & Teng Yang & Meixia Li & Hu Zhou & Kan Ding & Jianhua Gan & Hongbin Ji & Cai-Guang Yang, 2023. "Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Daniel Gómez-Cabello & George Pappas & Diana Aguilar-Morante & Christoffel Dinant & Jiri Bartek, 2022. "CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Pedro Weickert & Hao-Yi Li & Maximilian J. Götz & Sophie Dürauer & Denitsa Yaneva & Shubo Zhao & Jacqueline Cordes & Aleida C. Acampora & Ignasi Forne & Axel Imhof & Julian Stingele, 2023. "SPRTN patient variants cause global-genome DNA-protein crosslink repair defects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Pradeep Ramalingam & Michael C. Gutkin & Michael G. Poulos & Taylor Tillery & Chelsea Doughty & Agatha Winiarski & Ana G. Freire & Shahin Rafii & David Redmond & Jason M. Butler, 2023. "Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Andrea M. Kaminski & Kishore K. Chiruvella & Dale A. Ramsden & Katarzyna Bebenek & Thomas A. Kunkel & Lars C. Pedersen, 2022. "Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Aldo S. Bader & Martin Bushell, 2023. "iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Felix M. Dobbs & Patrick Eijk & Mick D. Fellows & Luisa Loiacono & Roberto Nitsch & Simon H. Reed, 2022. "Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28225-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.