IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2962-d1416004.html
   My bibliography  Save this article

Economics of Snow Accumulation on Photovoltaic Modules

Author

Listed:
  • Abdel Hakim Abou Yassine

    (Department of Mechanical, Industrial, and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA)

  • Ehsan Khoshbakhtnejad

    (Department of Mechanical, Industrial, and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA)

  • Hossein Sojoudi

    (Department of Mechanical, Industrial, and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA)

Abstract

The growth in photovoltaic (PV) module installations over the past decade has prompted a critical need to examine the economic implications of snow accumulation on solar energy production. The aim of this study is to quantify the economic impact of snow accumulation on PV modules in different regions and environmental conditions and to identify effective mitigation strategies for enhancing power generation efficiency and reliability of PV systems. It was found that snow accumulation on PV modules can lead to annual losses of 1% to 12% depending on the environmental conditions and geographic location. A financial analysis related to maintenance costs associated with snow accumulation on PV modules is also presented. A two-fold methodology of quantitative data analysis and interviews conducted with PV system operators is used for this purpose. In addition, the extent of snow accumulation financial losses in the U.S. is categorized based on the snowfall amount and solar market segment, suggesting an annual loss of at least USD 313M in utility and residential solar sectors. Furthermore, various currently employed active and passive snow mitigation strategies are presented in detail, describing their shortcomings and advantages. Finally, prospects on the need for developing reliable and cost-effective snow mitigation strategies for solar panels are discussed, paving the path for future studies.

Suggested Citation

  • Abdel Hakim Abou Yassine & Ehsan Khoshbakhtnejad & Hossein Sojoudi, 2024. "Economics of Snow Accumulation on Photovoltaic Modules," Energies, MDPI, vol. 17(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2962-:d:1416004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tak-Sing Wong & Sung Hoon Kang & Sindy K. Y. Tang & Elizabeth J. Smythe & Benjamin D. Hatton & Alison Grinthal & Joanna Aizenberg, 2011. "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," Nature, Nature, vol. 477(7365), pages 443-447, September.
    2. Hayibo, Koami Soulemane & Petsiuk, Aliaksei & Mayville, Pierce & Brown, Laura & Pearce, Joshua M., 2022. "Monofacial vs bifacial solar photovoltaic systems in snowy environments," Renewable Energy, Elsevier, vol. 193(C), pages 657-668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
    2. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    5. John P. Ulhøi, 2021. "From innovation-as-usual towards unusual innovation: using nature as an inspiration," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    6. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    8. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    10. Ruqaya Khammas & Heli Koivuluoto, 2022. "Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    11. Xie, Jun & Zhao, Bingzi & Zhang, Hang & Fu, Zheng & Yang, Tianhua & Li, Rundong, 2023. "Experimental study on the effect of dust particle deposition on photovoltaic performance of urban buildings," Renewable Energy, Elsevier, vol. 219(P1).
    12. Abdullah Ahmed Al-Dulaimi & Muhammet Tahir Guneser & Alaa Ali Hameed & Fausto Pedro García Márquez & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Performance Analysis of Classification and Detection for PV Panel Motion Blur Images Based on Deblurring and Deep Learning Techniques," Sustainability, MDPI, vol. 15(2), pages 1-32, January.
    13. Jianqiang Zhang & Xuejiao Wang & Zhaoyue Wang & Shangfa Pan & Bo Yi & Liqing Ai & Jun Gao & Frieder Mugele & Xi Yao, 2021. "Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Dewi, Retno Gumilang & Siagian, Ucok Welo Risma & Asmara, Briantama & Anggraini, Syahrina Dyah & Ichihara, Jun & Kobashi, Takuro, 2023. "Equitable, affordable, and deep decarbonization pathways for low-latitude developing cities by rooftop photovoltaics integrated with electric vehicles," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2962-:d:1416004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.