IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004058.html
   My bibliography  Save this article

Probabilistic assessment of climate-related impacts and risks in ports

Author

Listed:
  • Lucio, D.
  • Lara, J.L.
  • Tomás, A.
  • Losada, I.J.

Abstract

Port activities are crucial for sustained, long-term economic growth, serving as the primary nodes for importing and exporting goods within global supply chains. Given their coastal locations, ports are inherently exposed to climate hazards, such as waves and extreme sea levels, requiring large investments in resilient infrastructure. This study introduces an innovative methodology for assessing climate-related impacts and risks in ports, applicable to both existing and new constructions. This approach aims to facilitate climate-informed decision-making and enhance the management of coastal structures and ports under high uncertainty. The methodology’s novelty resides in: (1) the development of a port-specific risk framework capable of estimating impacts from both extreme events and daily conditions; (2) the integration of the latest advancements in nearshore climate hazard modeling; (3) the application of high-resolution tools for accurately simulating wave propagation towards harbor basins and the interaction between waves and structures; (4) the probabilistic determination of failure modes and operational shutdowns susceptible to climate conditions; and (5) the estimation of economic losses resulting from diminished operational capacity, in addition to the degradation of reliability and functionality in port infrastructures. Formulated within the Intergovernmental Panel on Climate Change (IPCC) risk framework and anchored in established Spanish Recommendations for Maritime Works (ROM Program), this methodology has been applied to a complex, state-owned, newly-built outer port in the Mediterranean Sea. Preliminary findings suggest that, over the course of a 50-year lifespan, climate-related risks could lead to cumulative losses nearing 10 million euros for such infrastructure. Nevertheless, in scenarios marked by extreme events, potential losses could escalate to as much as 100 million euros, despite their occurrence being relatively rare (with a probability of only 0.1%). It stresses the significant uncertainties encountered when evaluating climate-related risks for critical infrastructure, including ports, and highlights the critical need for advanced methodologies to accurately understand these risks.

Suggested Citation

  • Lucio, D. & Lara, J.L. & Tomás, A. & Losada, I.J., 2024. "Probabilistic assessment of climate-related impacts and risks in ports," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004058
    DOI: 10.1016/j.ress.2024.110333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren E. Walker & Marjolijn Haasnoot & Jan H. Kwakkel, 2013. "Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty," Sustainability, MDPI, vol. 5(3), pages 1-25, March.
    2. C. Izaguirre & I. J. Losada & P. Camus & J. L. Vigh & V. Stenek, 2021. "Climate change risk to global port operations," Nature Climate Change, Nature, vol. 11(1), pages 14-20, January.
    3. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Almutairi, Ayedh & Collier, Zachary A. & Hendrickson, Daniel & Palma-Oliveira, José M. & Polmateer, Thomas L. & Lambert, James H., 2019. "Stakeholder mapping and disruption scenarios with application to resilience of a container port," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 219-232.
    5. Alises, Ana & Molina, Rafael & Gómez, Rebeca & Pery, Pascual & Castillo, Carmen, 2014. "Overtopping hazards to port activities: Application of a new methodology to risk management (POrt Risk MAnagement Tool)," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 8-20.
    6. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    7. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    8. Notteboom, Theo, 2006. "Chapter 19 Concession Agreements as Port Governance Tools," Research in Transportation Economics, Elsevier, vol. 17(1), pages 437-455, January.
    9. Alfred J. Baird *, 2004. "Public goods and the public financing of major European seaports," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 375-391, October.
    10. A. Medal-Bartual & M. Molinos-Senante & R. Sala-Garrido, 2016. "Productivity change of the Spanish Port System: impact of the economic crisis," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(6), pages 683-705, August.
    11. Cao, Xinhu & Lam, Jasmine Siu Lee, 2018. "Simulation-based catastrophe-induced port loss estimation," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 1-12.
    12. Núñez-Sánchez, Ramón & Coto-Millán, Pablo, 2012. "The impact of public reforms on the productivity of Spanish ports: A parametric distance function approach," Transport Policy, Elsevier, vol. 24(C), pages 99-108.
    13. Alexandra Toimil & Iñigo J. Losada & Pedro Díaz-Simal & Cristina Izaguirre & Paula Camus, 2017. "Multi-sectoral, high-resolution assessment of climate change consequences of coastal flooding," Climatic Change, Springer, vol. 145(3), pages 431-444, December.
    14. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Jasper Verschuur & Elco E. Koks & Jim W. Hall, 2023. "Systemic risks from climate-related disruptions at ports," Nature Climate Change, Nature, vol. 13(8), pages 804-806, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Tom Spencer & Alexandre K. Magnan & Simon Donner & Matthias Garschagen & James Ford & Virginie K. E. Duvat & Colette C. C. Wabnitz, 2024. "Habitability of low-lying socio-ecological systems under a changing climate," Climatic Change, Springer, vol. 177(1), pages 1-19, January.
    3. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    5. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    7. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    8. Sitong Yang & Shouwei Li & Xue Rui & Tianxiang Zhao, 2024. "The impact of climate risk on the asset side and liability side of the insurance industry: evidence from China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-51, June.
    9. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Lusheng Li & Lili Zhao & Yanbin Li, 2023. "Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    12. Fekete, Alexander & Fuchs, Sven & Garschagen, Matthias & Hutter, Gérard & Klepp, Silja & Lüder, Catharina & Neise, Thomas & Sett, Dominic & von Elverfeldt, Kirsten & Wannewitz, Mia, 2022. "Adjustment or transformation? Disaster risk intervention examples from Austria, Indonesia, Kiribati and South Africa," Land Use Policy, Elsevier, vol. 120(C).
    13. Prager, Steven D. & Wiebe, Keith D., 2022. "Strategic foresight in One CGIAR: Gaps and needs in approaches and capacity," Other briefs January 2022, International Food Policy Research Institute (IFPRI).
    14. Tatiana Bullová & Zuzana Bajusová & Peter Bielik & Erwin Schmid & Rastislav Skalský & Jozef Takáč & Viktória Benďáková & Izabela Adamičková & Natália Turčeková & Ján Jobbágy, 2024. "Impact assessment of climate change at farm level: A methodological approach based on integrated biophysical and economic models," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(12), pages 577-590.
    15. Tao, Hu & Zhuang, Shan & Xue, Rui & Cao, Wei & Tian, Jinfang & Shan, Yuli, 2022. "Environmental Finance: An Interdisciplinary Review," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    16. Marine Lanet & Laurent Li & Hervé Le Treut, 2024. "A framework to assess climate change effects on surface air temperature and soil moisture and application to Southwestern France," Climatic Change, Springer, vol. 177(12), pages 1-17, December.
    17. Pui Man Kam & Fabio Ciccone & Chahan M. Kropf & Lukas Riedel & Christopher Fairless & David N. Bresch, 2024. "Impact-based forecasting of tropical cyclone-related human displacement to support anticipatory action," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Prager, Steven & Wiebe, Keith, 2021. "Strategic Foresight in the One CGIAR: Gaps and Needs in Approaches and Capacity," SocArXiv 7kfxv, Center for Open Science.
    19. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    20. Samir Shehu Danhassan & Ahmed Abubakar & Aminu Sulaiman Zangina & Mohammad Hadi Ahmad & Saddam A. Hazaea & Mohd Yusoff Ishak & Jiahua Zhang, 2023. "Flood Policy and Governance: A Pathway for Policy Coherence in Nigeria," Sustainability, MDPI, vol. 15(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.