IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27014-z.html
   My bibliography  Save this article

Temporal loss boundary engineered photonic cavity

Author

Listed:
  • Longqing Cong

    (Southern University of Science and Technology)

  • Jiaguang Han

    (Tianjin University
    Guilin University of Electronic Technology)

  • Weili Zhang

    (Oklahoma State University)

  • Ranjan Singh

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

Losses are ubiquitous and unavoidable in nature inhibiting the performance of most optical processes. Manipulating losses to adjust the dissipation of photons is analogous to braking a running car that is as important as populating photons via a gain medium. Here, we introduce the transient loss boundary into a photon populated cavity that functions as a ‘photon brake’ and probe photon dynamics by engineering the ‘brake timing’ and ‘brake strength’. Coupled cavity photons can be distinguished by stripping one photonic mode through controlling the loss boundary, which enables the transition from a coupled to an uncoupled state. We interpret the transient boundary as a perturbation by considering both real and imaginary parts of permittivity, and the dynamic process is modeled with a temporal two-dipole oscillator: one with the natural resonant polarization and the other with a frequency-shift polarization. The model unravels the underlying mechanism of concomitant coherent spectral oscillations and generation of tone-tuning cavity photons in the braking process. By synthesizing the temporal loss boundary into a photon populated cavity, a plethora of interesting phenomena and applications are envisioned such as the observation of quantum squeezed states, low-loss nonreciprocal waveguides and ultrafast beam scanning devices.

Suggested Citation

  • Longqing Cong & Jiaguang Han & Weili Zhang & Ranjan Singh, 2021. "Temporal loss boundary engineered photonic cavity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27014-z
    DOI: 10.1038/s41467-021-27014-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27014-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27014-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiyu Zhou & M. Zahirul Alam & Mohammad Karimi & Jeremy Upham & Orad Reshef & Cong Liu & Alan E. Willner & Robert W. Boyd, 2020. "Broadband frequency translation through time refraction in an epsilon-near-zero material," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. G. Günter & A. A. Anappara & J. Hees & A. Sell & G. Biasiol & L. Sorba & S. De Liberato & C. Ciuti & A. Tredicucci & A. Leitenstorfer & R. Huber, 2009. "Sub-cycle switch-on of ultrastrong light–matter interaction," Nature, Nature, vol. 458(7235), pages 178-181, March.
    3. Chia Wei Hsu & Bo Zhen & Jeongwon Lee & Song-Liang Chua & Steven G. Johnson & John D. Joannopoulos & Marin Soljačić, 2013. "Observation of trapped light within the radiation continuum," Nature, Nature, vol. 499(7457), pages 188-191, July.
    4. Maxim R. Shcherbakov & Kevin Werner & Zhiyuan Fan & Noah Talisa & Enam Chowdhury & Gennady Shvets, 2019. "Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Yoshihiro Akahane & Takashi Asano & Bong-Shik Song & Susumu Noda, 2003. "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature, Nature, vol. 425(6961), pages 944-947, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Ditzen & Francesco Ravazzolo, 2022. "Dominant Drivers of National Inflation," Working Papers No 08/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Romain Tirole & Stefano Vezzoli & Dhruv Saxena & Shu Yang & T. V. Raziman & Emanuele Galiffi & Stefan A. Maier & John B. Pendry & Riccardo Sapienza, 2024. "Second harmonic generation at a time-varying interface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Xuezhi Ma & Kaushik Kudtarkar & Yixin Chen & Preston Cunha & Yuan Ma & Kenji Watanabe & Takashi Taniguchi & Xiaofeng Qian & M. Cynthia Hipwell & Zi Jing Wong & Shoufeng Lan, 2022. "Coherent momentum control of forbidden excitons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Pengcheng Huo & Wei Chen & Zixuan Zhang & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Hui Zhang & Zhaoxian Chen & Henri Lezec & Wenqi Zhu & Amit Agrawal & Chao Peng & Yanqing Lu & Ting Xu, 2024. "Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Emanuele Galiffi & Paloma A. Huidobro & J. B. Pendry, 2022. "An Archimedes' screw for light," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jiaye Wu & Marco Clementi & Chenxingyu Huang & Feng Ye & Hongyan Fu & Lei Lu & Shengdong Zhang & Qian Li & Camille-Sophie Brès, 2024. "Thermo-optic epsilon-near-zero effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Ming Kang & Ziying Zhang & Tong Wu & Xueqian Zhang & Quan Xu & Alex Krasnok & Jiaguang Han & Andrea Alù, 2022. "Coherent full polarization control based on bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Thomas R. Jones & Alexander V. Kildishev & Mordechai Segev & Dimitrios Peroulis, 2024. "Time-reflection of microwaves by a fast optically-controlled time-boundary," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Chloe F. Doiron & Igal Brener & Alexander Cerjan, 2022. "Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Wallace Jaffray & Federico Belli & Enrico G. Carnemolla & Catalina Dobas & Mark Mackenzie & John Travers & Ajoy K. Kar & Matteo Clerici & Clayton DeVault & Vladimir M. Shalaev & Alexandra Boltasseva &, 2022. "Near-zero-index ultra-fast pulse characterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. J. Enrique Vázquez-Lozano & Iñigo Liberal, 2023. "Incandescent temporal metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Kristian Arjas & Jani Matti Taskinen & Rebecca Heilmann & Grazia Salerno & Päivi Törmä, 2024. "High topological charge lasing in quasicrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Maxim R. Shcherbakov & Giovanni Sartorello & Simin Zhang & Joshua Bocanegra & Melissa Bosch & Michael Tripepi & Noah Talisa & Abdallah AlShafey & Joseph Smith & Stephen Londo & François Légaré & Enam , 2023. "Nanoscale reshaping of resonant dielectric microstructures by light-driven explosions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Lucca Kühner & Luca Sortino & Rodrigo Berté & Juan Wang & Haoran Ren & Stefan A. Maier & Yuri Kivshar & Andreas Tittl, 2022. "Radial bound states in the continuum for polarization-invariant nanophotonics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Marcus Albrechtsen & Babak Vosoughi Lahijani & Rasmus Ellebæk Christiansen & Vy Thi Hoang Nguyen & Laura Nevenka Casses & Søren Engelberth Hansen & Nicolas Stenger & Ole Sigmund & Henri Jansen & Jespe, 2022. "Nanometer-scale photon confinement in topology-optimized dielectric cavities," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Wenhao Wang & Yogesh Kumar Srivastava & Thomas CaiWei Tan & Zhiming Wang & Ranjan Singh, 2023. "Brillouin zone folding driven bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Lujun Huang & Rong Jin & Chaobiao Zhou & Guanhai Li & Lei Xu & Adam Overvig & Fu Deng & Xiaoshuang Chen & Wei Lu & Andrea Alù & Andrey E. Miroshnichenko, 2023. "Ultrahigh-Q guided mode resonances in an All-dielectric metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27014-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.