IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09313-8.html
   My bibliography  Save this article

Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces

Author

Listed:
  • Maxim R. Shcherbakov

    (Cornell University)

  • Kevin Werner

    (The Ohio State University)

  • Zhiyuan Fan

    (Cornell University)

  • Noah Talisa

    (The Ohio State University)

  • Enam Chowdhury

    (The Ohio State University)

  • Gennady Shvets

    (Cornell University)

Abstract

Time-dependent nonlinear media, such as rapidly generated plasmas produced via laser ionization of gases, can increase the energy of individual laser photons and generate tunable high-order harmonic pulses. This phenomenon, known as photon acceleration, has traditionally required extreme-intensity laser pulses and macroscopic propagation lengths. Here, we report on a novel nonlinear material—an ultrathin semiconductor metasurface—that exhibits efficient photon acceleration at low intensities. We observe a signature nonlinear manifestation of photon acceleration: third-harmonic generation of near-infrared photons with tunable frequencies reaching up to ≈3.1ω. A simple time-dependent coupled-mode theory, found to be in good agreement with experimental results, is utilized to predict a new path towards nonlinear radiation sources that combine resonant upconversion with broadband operation.

Suggested Citation

  • Maxim R. Shcherbakov & Kevin Werner & Zhiyuan Fan & Noah Talisa & Enam Chowdhury & Gennady Shvets, 2019. "Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09313-8
    DOI: 10.1038/s41467-019-09313-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09313-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09313-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longqing Cong & Jiaguang Han & Weili Zhang & Ranjan Singh, 2021. "Temporal loss boundary engineered photonic cavity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Maxim R. Shcherbakov & Giovanni Sartorello & Simin Zhang & Joshua Bocanegra & Melissa Bosch & Michael Tripepi & Noah Talisa & Abdallah AlShafey & Joseph Smith & Stephen Londo & François Légaré & Enam , 2023. "Nanoscale reshaping of resonant dielectric microstructures by light-driven explosions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09313-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.