IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53952-5.html
   My bibliography  Save this article

High topological charge lasing in quasicrystals

Author

Listed:
  • Kristian Arjas

    (Aalto University School of Science)

  • Jani Matti Taskinen

    (Aalto University School of Science)

  • Rebecca Heilmann

    (Aalto University School of Science)

  • Grazia Salerno

    (Aalto University School of Science)

  • Päivi Törmä

    (Aalto University School of Science)

Abstract

Photonic modes exhibiting a polarization winding akin to a vortex possess an integer topological charge. Lasing with topological charge 1 or 2 can be realized in periodic lattices of up to six-fold rotational symmetry—higher order charges require symmetries not compatible with any two-dimensional Bravais lattice. Here, we experimentally demonstrate lasing with topological charges as high as −5, +7, −17 and +19 in quasicrystals. We discover rich ordered structures of increasing topological charges in the reciprocal space. Our quasicrystal design utilizes group theory in determining electromagnetic field nodes, where lossy plasmonic nanoparticles are positioned to maximize gain. Our results open a new path for fundamental studies of higher-order topological defects, coherent light beams of high topological charge, and realizations of omni-directional, flat-band-like lasing.

Suggested Citation

  • Kristian Arjas & Jani Matti Taskinen & Rebecca Heilmann & Grazia Salerno & Päivi Törmä, 2024. "High topological charge lasing in quasicrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53952-5
    DOI: 10.1038/s41467-024-53952-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53952-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53952-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min-Soo Hwang & Hoo-Cheol Lee & Kyoung-Ho Kim & Kwang-Yong Jeong & Soon-Hong Kwon & Kirill Koshelev & Yuri Kivshar & Hong-Gyu Park, 2021. "Ultralow-threshold laser using super-bound states in the continuum," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Yun-Gang Sang & Jing-Yu Lu & Yun-Hao Ouyang & Hong-Yi Luan & Jia-Hao Wu & Jia-Yong Li & Ren-Min Ma, 2022. "Topological polarization singular lasing with highly efficient radiation channel," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. T. K. Hakala & H. T. Rekola & A. I. Väkeväinen & J.-P. Martikainen & M. Nečada & A. J. Moilanen & P. Törmä, 2017. "Lasing in dark and bright modes of a finite-sized plasmonic lattice," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    4. Chia Wei Hsu & Bo Zhen & Jeongwon Lee & Song-Liang Chua & Steven G. Johnson & John D. Joannopoulos & Marin Soljačić, 2013. "Observation of trapped light within the radiation continuum," Nature, Nature, vol. 499(7457), pages 188-191, July.
    5. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Ashok Kodigala & Thomas Lepetit & Qing Gu & Babak Bahari & Yeshaiahu Fainman & Boubacar Kanté, 2017. "Lasing action from photonic bound states in continuum," Nature, Nature, vol. 541(7636), pages 196-199, January.
    7. Jicheng Jin & Xuefan Yin & Liangfu Ni & Marin Soljačić & Bo Zhen & Chao Peng, 2019. "Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering," Nature, Nature, vol. 574(7779), pages 501-504, October.
    8. Eiji Miyai & Kyosuke Sakai & Takayuki Okano & Wataru Kunishi & Dai Ohnishi & Susumu Noda, 2006. "Lasers producing tailored beams," Nature, Nature, vol. 441(7096), pages 946-946, June.
    9. Miriam Serena Vitiello & Michele Nobile & Alberto Ronzani & Alessandro Tredicucci & Fabrizio Castellano & Valerio Talora & Lianhe Li & Edmund H. Linfield & A. Giles Davies, 2014. "Photonic quasi-crystal terahertz lasers," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chloe F. Doiron & Igal Brener & Alexander Cerjan, 2022. "Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Lujun Huang & Rong Jin & Chaobiao Zhou & Guanhai Li & Lei Xu & Adam Overvig & Fu Deng & Xiaoshuang Chen & Wei Lu & Andrea Alù & Andrey E. Miroshnichenko, 2023. "Ultrahigh-Q guided mode resonances in an All-dielectric metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ming Kang & Ziying Zhang & Tong Wu & Xueqian Zhang & Quan Xu & Alex Krasnok & Jiaguang Han & Andrea Alù, 2022. "Coherent full polarization control based on bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lucca Kühner & Luca Sortino & Rodrigo Berté & Juan Wang & Haoran Ren & Stefan A. Maier & Yuri Kivshar & Andreas Tittl, 2022. "Radial bound states in the continuum for polarization-invariant nanophotonics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Wenhao Wang & Yogesh Kumar Srivastava & Thomas CaiWei Tan & Zhiming Wang & Ranjan Singh, 2023. "Brillouin zone folding driven bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Xuezhi Ma & Kaushik Kudtarkar & Yixin Chen & Preston Cunha & Yuan Ma & Kenji Watanabe & Takashi Taniguchi & Xiaofeng Qian & M. Cynthia Hipwell & Zi Jing Wong & Shoufeng Lan, 2022. "Coherent momentum control of forbidden excitons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Pengcheng Huo & Wei Chen & Zixuan Zhang & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Hui Zhang & Zhaoxian Chen & Henri Lezec & Wenqi Zhu & Amit Agrawal & Chao Peng & Yanqing Lu & Ting Xu, 2024. "Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Longqing Cong & Jiaguang Han & Weili Zhang & Ranjan Singh, 2021. "Temporal loss boundary engineered photonic cavity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Jingyi Tian & Qi Ying Tan & Yutao Wang & Yihao Yang & Guanghui Yuan & Giorgio Adamo & Cesare Soci, 2023. "Perovskite quantum dot one-dimensional topological laser," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Shengyan Liu & Hao Tong & Kejie Fang, 2022. "Optomechanical crystal with bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53952-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.