IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26749-z.html
   My bibliography  Save this article

A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR

Author

Listed:
  • Arnab Chakraborty

    (Louisiana State University)

  • Liyanage D. Fernando

    (Louisiana State University)

  • Wenxia Fang

    (Guangxi Academy of Sciences)

  • Malitha C. Dickwella Widanage

    (Louisiana State University)

  • Pingzhen Wei

    (Guangxi Academy of Sciences)

  • Cheng Jin

    (Guangxi Academy of Sciences
    Chinese Academy of Sciences)

  • Thierry Fontaine

    (Institut Pasteur)

  • Jean-Paul Latgé

    (University of Crete)

  • Tuo Wang

    (Louisiana State University)

Abstract

Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses.

Suggested Citation

  • Arnab Chakraborty & Liyanage D. Fernando & Wenxia Fang & Malitha C. Dickwella Widanage & Pingzhen Wei & Cheng Jin & Thierry Fontaine & Jean-Paul Latgé & Tuo Wang, 2021. "A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26749-z
    DOI: 10.1038/s41467-021-26749-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26749-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26749-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takanori Furukawa & Norman van Rhijn & Marcin Fraczek & Fabio Gsaller & Emma Davies & Paul Carr & Sara Gago & Rachael Fortune-Grant & Sayema Rahman & Jane Mabey Gilsenan & Emma Houlder & Caitlin H. Ko, 2020. "The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Xue Kang & Alex Kirui & Malitha C. Dickwella Widanage & Frederic Mentink-Vigier & Daniel J. Cosgrove & Tuo Wang, 2019. "Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Xue Kang & Alex Kirui & Artur Muszyński & Malitha C. Dickwella Widanage & Adrian Chen & Parastoo Azadi & Ping Wang & Frederic Mentink-Vigier & Tuo Wang, 2018. "Molecular architecture of fungal cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Qinghui Cheng & Malitha C. Dickwella Widanage & Jayasubba Reddy Yarava & Ankur Ankur & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Liyanage D. Fernando & Yordanis Pérez-Llano & Malitha C. Dickwella Widanage & Anand Jacob & Liliana Martínez-Ávila & Andrew S. Lipton & Nina Gunde-Cimerman & Jean-Paul Latgé & Ramón Alberto Batista-Ga, 2023. "Structural adaptation of fungal cell wall in hypersaline environment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhong Xie & Jeffrey M. Rybak & Adela Martin-Vicente & Xabier Guruceaga & Harrison I. Thorn & Ashley V. Nywening & Wenbo Ge & Josie E. Parker & Steven L. Kelly & P. David Rogers & Jarrod R. Fortwende, 2024. "The sterol C-24 methyltransferase encoding gene, erg6, is essential for viability of Aspergillus species," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Norman Rhijn & Can Zhao & Narjes Al-Furaiji & Isabelle S. R. Storer & Clara Valero & Sara Gago & Harry Chown & Clara Baldin & Rachael-Fortune Grant & Hajer Shuraym & Lia Ivanova & Olaf Kniemeyer & Tho, 2024. "Functional analysis of the Aspergillus fumigatus kinome identifies a druggable DYRK kinase that regulates septal plugging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Paul Bowyer & Andrew Currin & Daniela Delneri & Marcin G. Fraczek, 2022. "Telomere-to-telomere genome sequence of the model mould pathogen Aspergillus fumigatus," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Liyanage D. Fernando & Yordanis Pérez-Llano & Malitha C. Dickwella Widanage & Anand Jacob & Liliana Martínez-Ávila & Andrew S. Lipton & Nina Gunde-Cimerman & Jean-Paul Latgé & Ramón Alberto Batista-Ga, 2023. "Structural adaptation of fungal cell wall in hypersaline environment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Neil A. R. Gow & Carolyn Johnson & Judith Berman & Alix T. Coste & Christina A. Cuomo & David S. Perlin & Tihana Bicanic & Thomas S. Harrison & Nathan Wiederhold & Mike Bromley & Tom Chiller & Keegan , 2022. "The importance of antimicrobial resistance in medical mycology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Qinghui Cheng & Malitha C. Dickwella Widanage & Jayasubba Reddy Yarava & Ankur Ankur & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26749-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.