IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05199-0.html
   My bibliography  Save this article

Molecular architecture of fungal cell walls revealed by solid-state NMR

Author

Listed:
  • Xue Kang

    (Louisiana State University)

  • Alex Kirui

    (Louisiana State University)

  • Artur Muszyński

    (University of Georgia)

  • Malitha C. Dickwella Widanage

    (Louisiana State University)

  • Adrian Chen

    (Louisiana State University)

  • Parastoo Azadi

    (University of Georgia)

  • Ping Wang

    (Louisiana State University Health Sciences Center)

  • Frederic Mentink-Vigier

    (National High Magnetic Field Laboratory)

  • Tuo Wang

    (Louisiana State University)

Abstract

The high mortality of invasive fungal infections, and the limited number and inefficacy of antifungals necessitate the development of new agents with novel mechanisms and targets. The fungal cell wall is a promising target as it contains polysaccharides absent in humans, however, its molecular structure remains elusive. Here we report the architecture of the cell walls in the pathogenic fungus Aspergillus fumigatus. Solid-state NMR spectroscopy, assisted by dynamic nuclear polarization and glycosyl linkage analysis, reveals that chitin and α-1,3-glucan build a hydrophobic scaffold that is surrounded by a hydrated matrix of diversely linked β-glucans and capped by a dynamic layer of glycoproteins and α-1,3-glucan. The two-domain distribution of α-1,3-glucans signifies the dual functions of this molecule: contributing to cell wall rigidity and fungal virulence. This study provides a high-resolution model of fungal cell walls and serves as the basis for assessing drug response to promote the development of wall-targeted antifungals.

Suggested Citation

  • Xue Kang & Alex Kirui & Artur Muszyński & Malitha C. Dickwella Widanage & Adrian Chen & Parastoo Azadi & Ping Wang & Frederic Mentink-Vigier & Tuo Wang, 2018. "Molecular architecture of fungal cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05199-0
    DOI: 10.1038/s41467-018-05199-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05199-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05199-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnab Chakraborty & Liyanage D. Fernando & Wenxia Fang & Malitha C. Dickwella Widanage & Pingzhen Wei & Cheng Jin & Thierry Fontaine & Jean-Paul Latgé & Tuo Wang, 2021. "A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Qinghui Cheng & Malitha C. Dickwella Widanage & Jayasubba Reddy Yarava & Ankur Ankur & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Liyanage D. Fernando & Yordanis Pérez-Llano & Malitha C. Dickwella Widanage & Anand Jacob & Liliana Martínez-Ávila & Andrew S. Lipton & Nina Gunde-Cimerman & Jean-Paul Latgé & Ramón Alberto Batista-Ga, 2023. "Structural adaptation of fungal cell wall in hypersaline environment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05199-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.