Identification of proximal SUMO-dependent interactors using SUMO-ID
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-26807-6
Download full text from publisher
References listed on IDEAS
- Annie M. Sriramachandran & Katrin Meyer-Teschendorf & Stefan Pabst & Helle D. Ulrich & Niels H. Gehring & Kay Hofmann & Gerrit J. K. Praefcke & R. Jürgen Dohmen, 2019. "Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
- Isabel Myriam Schopp & Cinthia Claudia Amaya Ramirez & Jerneja Debeljak & Elisa Kreibich & Merle Skribbe & Klemens Wild & Julien Béthune, 2017. "Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
- Ramesh Kumar & Román González-Prieto & Zhenyu Xiao & Matty Verlaan-de Vries & Alfred C. O. Vertegaal, 2017. "The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
- Orhi Barroso-Gomila & Laura Merino-Cacho & Veronica Muratore & Coralia Perez & Vincenzo Taibi & Elena Maspero & Mikel Azkargorta & Ibon Iloro & Fredrik Trulsson & Alfred C. O. Vertegaal & Ugo Mayor & , 2023. "BioE3 identifies specific substrates of ubiquitin E3 ligases," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Laura A. Claessens & Matty Verlaan-de Vries & Ilona J. Graaf & Alfred C. O. Vertegaal, 2023. "SENP6 regulates localization and nuclear condensation of DNA damage response proteins by group deSUMOylation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Shichang Liu & Erin Atkinson & Adriana Paulucci-Holthauzen & Bin Wang, 2023. "A CK2 and SUMO-dependent, PML NB-involved regulatory mechanism controlling BLM ubiquitination and G-quadruplex resolution," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Sarah Tessier & Omar Ferhi & Marie-Claude Geoffroy & Román González-Prieto & Antoine Canat & Samuel Quentin & Marika Pla & Michiko Niwa-Kawakita & Pierre Bercier & Domitille Rérolle & Marilyn Tirard &, 2022. "Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Andrej Paluda & Adam J. Middleton & Claudia Rossig & Peter D. Mace & Catherine L. Day, 2022. "Ubiquitin and a charged loop regulate the ubiquitin E3 ligase activity of Ark2C," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Zeliha Yalçin & Shiu Yeung Lam & Marieke H. Peuscher & Jaco Torre & Sha Zhu & Prasanna V. Iyengar & Daniel Salas-Lloret & Inge Krijger & Nathalie Moatti & Ruben Lugt & Mattia Falcone & Aurora Cerutti , 2024. "UBE2D3 facilitates NHEJ by orchestrating ATM signalling through multi-level control of RNF168," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Fredrik Trulsson & Vyacheslav Akimov & Mihaela Robu & Nila Overbeek & David Aureliano Pérez Berrocal & Rashmi G. Shah & Jürgen Cox & Girish M. Shah & Blagoy Blagoev & Alfred C. O. Vertegaal, 2022. "Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Daniel Salas-Lloret & Néstor García-Rodríguez & Emily Soto-Hidalgo & Lourdes González-Vinceiro & Carmen Espejo-Serrano & Lisanne Giebel & María Luisa Mateos-Martín & Arnoud H. Ru & Peter A. Veelen & P, 2024. "BRCA1/BARD1 ubiquitinates PCNA in unperturbed conditions to promote continuous DNA synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26807-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.