Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-019-10741-9
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuandi Gao & Laure Guitton-Sert & Julien Dessapt & Yan Coulombe & Amélie Rodrigue & Larissa Milano & Andréanne Blondeau & Nicolai Balle Larsen & Julien P. Duxin & Samer Hussein & Amélie Fradet-Turcott, 2023. "A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Charlotte Blessing & Katja Apelt & Diana Heuvel & Claudia Gonzalez-Leal & Magdalena B. Rother & Melanie Woude & Román González-Prieto & Adi Yifrach & Avital Parnas & Rashmi G. Shah & Tia Tyrsett Kuo &, 2022. "XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
- Fen Yang & Jianji Chen & Bin Liu & Guozhen Gao & Manu Sebastian & Collene Jeter & Jianjun Shen & Maria D. Person & Mark T. Bedford, 2021. "SPINDOC binds PARP1 to facilitate PARylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Megha Jhanji & Chintada Nageswara Rao & Jacob C. Massey & Marion C. Hope & Xueyan Zhou & C. Dirk Keene & Tao Ma & Michael D. Wyatt & Jason A. Stewart & Mathew Sajish, 2022. "Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10741-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.