IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9567-d1170904.html
   My bibliography  Save this article

Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada

Author

Listed:
  • Mohammad Zeynoddin

    (Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada)

  • Hossein Bonakdari

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Silvio José Gumiere

    (Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada)

  • Alain N. Rousseau

    (Institut National de la Recherche Scientifique-Eau Terre Environnement INRS-ETE, Quebec, QC G1K 9A9, Canada)

Abstract

The profound impact of soil temperature ( T S ) on crucial environmental processes, including water infiltration, subsurface movement, plant growth, and its influence on land–atmosphere dynamics, cannot be undermined. While satellite and land surface model-based data are valuable in data-sparse areas, they necessitate innovative solutions to bridge gaps and overcome temporal delays arising from their dependence on atmospheric and hydro–meteorological factors. This research introduces a viable technique to address the lag in the Famine Early Warning Network Land Data Assimilation System (FLDAS). Notably, this approach exhibits versatility, proving highly effective in analyzing datasets characterized by significant seasonal trends, and its application holds immense value in watershed-scaled hydrological research. Leveraging the enhanced state-space (SS) method for forecasting in the FLDAS, this technique harnesses T S datasets collected over time at various depths (0–10 cm, 10–40 cm, and 40–100 cm), employing a multiplicative SS model for modeling purposes. By employing the 1-step, 6-step, and 12-step-ahead models at different depths and 2 locations in Quebec, Canada, the outcomes showcased a performance with an average coefficient of determination (R 2 ) of 0.88 and root mean squared error (RMSE) of 2.073 °C for the dynamic model, R 2 of 0.834 and RMSE of 2.979 °C for the 6-step-ahead model, and R 2 of 0.921 and RMSE of 1.865 °C for the 12-step-ahead model. The results revealed that as the prediction horizon expands and the length of the input data increases, the accuracy of predictions progressively improves, indicating that this model becomes increasingly accurate over time.

Suggested Citation

  • Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9567-:d:1170904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    2. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    3. Paul Goodwin, 2010. "The Holt-Winters Approach to Exponential Smoothing: 50 Years Old and Going Strong," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 19, pages 30-33, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    2. P. Velumani & N. V. N. Nampoothiri & M. Urbański, 2021. "A Comparative Study of Models for the Construction Duration Prediction in Highway Road Projects of India," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    3. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    4. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    5. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    6. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    7. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
    8. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    10. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    11. Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
    12. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    13. Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
    14. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Jian Zhang & Xiaoqian Liu & Yao Qin & Yaoyuan Fan & Shuqian Cheng, 2024. "Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China," Land, MDPI, vol. 13(9), pages 1-25, September.
    16. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Muslima Zahan & Ron S. Kenett, 2013. "Modeling and Forecasting Energy Consumption in the Manufacturing Industry in South Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 3(1), pages 87-98.
    18. Anis Chariri & Indira Januarti, 2017. "Audit Committee Characteristics and Integrated Reporting:Empirical Study of Companies Listed on the Johannesburg Stock Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 305-318.
    19. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    20. Paulilo Brasil & Pedro Medeiros, 2020. "NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 195-210, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9567-:d:1170904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.