IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2810-d760498.html
   My bibliography  Save this article

Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China

Author

Listed:
  • Zhan Chen

    (Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China)

  • Yihao Wang

    (College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China)

  • Ruisi Chen

    (School of Mathematics and Physics, University of Science and Technology, Beijing 100083, China)

  • Xiuya Ni

    (Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China)

  • Jixin Cao

    (Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China
    Beijing Academy of Forestry and Landscape Architecture, Beijing 100044, China)

Abstract

Although new inputs of acidic anions are decreasing, soil acidification still deserves more academic attention because of the effects of historical stores of SO 4 2 − already absorbed into soils. Forest canopy has large, species-specific effects on rainwater chemistry, for which the hydrological mechanism remains unclear. We investigated precipitation, throughfall, stemflow, and litter leachate across three forest types in a severely acid-polluted site located in Southwest China. Precipitation monitored over 4 months, representing summer, fall, winter, and spring, indicated neutral precipitation in Tieshanping with pH ranging from 6.58–7.33. Throughfall and litter leachate in Pinus massoniana Lamb. stands were enriched with greater cation and anion fluxes, as well as more dissolved organic carbon (DOC) flux. Rainwater from pure stands of Cinnamomum camphora (Linn) Presl yielded lower N and DOC inputs to soils with higher base saturation, which would reduce soil acidification and, therefore, improve the sustainability of forest ecosystems.

Suggested Citation

  • Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2810-:d:760498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard A. Betts & Peter M. Cox & Susan E. Lee & F. Ian Woodward, 1997. "Contrasting physiological and structural vegetation feedbacks in climate change simulations," Nature, Nature, vol. 387(6635), pages 796-799, June.
    2. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    3. Fang Zhao & Xincan Lan & Wuyang Li & Wenbo Zhu & Tianqi Li, 2021. "Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Zhang & Jiangmin Zhou & Han Ren & Hualin Chen, 2024. "Characterization of Forest Soil Acidification in Wenzhou Daluoshan and Zhejiang Wuyanling National Nature Reserve," Sustainability, MDPI, vol. 16(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Huo & Fan Yang & Xiefei Zhi & Ali Mamtimin & Qing He & Honglin Pan & Cong Wen & Yu Wang & Ye Wu & Xinghua Yang & Chenglong Zhou & Meiqi Song & Lu Meng & Minzhong Wang, 2022. "A Comparative Study on the Difference in Meteorological Monitoring between Constructed Green Land and Natural Sandy Land," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    2. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Anatoly Shvidenko & Mike Apps, 2006. "The International Boreal Forest Research Association: Understanding Boreal Forests and Forestry in a Changing World," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(1), pages 5-32, January.
    4. Jiale Tang & Xincan Lan & Yuanyuan Lian & Fang Zhao & Tianqi Li, 2022. "Estimation of Urban–Rural Land Surface Temperature Difference at Different Elevations in the Qinling–Daba Mountains Using MODIS and the Random Forest Model," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    5. Robert Hamwey, 2007. "Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 419-439, May.
    6. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    7. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    8. Raphael Portmann & Urs Beyerle & Edouard Davin & Erich M. Fischer & Steven Hertog & Sebastian Schemm, 2022. "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. He, Hongxing & Jansson, Per-Erik & Svensson, Magnus & Meyer, Astrid & Klemedtsson, Leif & Kasimir, Åsa, 2016. "Factors controlling Nitrous Oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel," Ecological Modelling, Elsevier, vol. 321(C), pages 46-63.
    10. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
    11. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    12. Binkley, Clark S. & Brand, David & Harkin, Zoe & Bull, Gary & Ravindranath, N. H. & Obersteiner, Michael & Nilsson, Sten & Yamagata, Yoshiki & Krott, Max, 2002. "Carbon sink by the forest sector--options and needs for implementation," Forest Policy and Economics, Elsevier, vol. 4(1), pages 65-77, May.
    13. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    14. Jingeng Huo & Zhenqin Shi & Wenbo Zhu & Hua Xue & Xin Chen, 2022. "A Multi-Scenario Simulation and Optimization of Land Use with a Markov–FLUS Coupling Model: A Case Study in Xiong’an New Area, China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    15. Sohngen, Brent & Favero, Alice & Jin, Yufang & Huang, Yuhan, 2018. "Global cost estimates of forest climate mitigation with albedo: A new policy approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274307, Agricultural and Applied Economics Association.
    16. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Jussi Lintunen & Aapo Rautiainen & Jussi Uusivuori, 2022. "Which Is more Important, Carbon or Albedo? Optimizing Harvest Rotations for Timber and Climate Benefits in a Changing Climate," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 134-160, January.
    18. Enjun Ma & Xiangzheng Deng & Qian Zhang & Anping Liu, 2014. "Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China," Energies, MDPI, vol. 7(4), pages 1-13, April.
    19. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    20. David Lutz & Richard Howarth, 2014. "Valuing albedo as an ecosystem service: implications for forest management," Climatic Change, Springer, vol. 124(1), pages 53-63, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2810-:d:760498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.