IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1853.html
   My bibliography  Save this article

Delegációk igazságos kiválasztása társadalmi választások elméletével
[Choosing a fair delegation by social choice theory]

Author

Listed:
  • Csóka, Péter
  • Kondor, Gábor

Abstract

Gyakran felmerül az a kérdés, hogy hogyan válasszunk igazságos delegációt, olyan bizottságot, amely például békekonferencián, társadalmi, vállalati vagy akár egyetemi döntés-előkészítésben reprezentálja az érintettek véleményét. Can és szerzőtársai [2017] olyan delegációkiválasztási szabályokat vizsgál, amelyek eleget tesznek a Pareto-hatékonyság, a konzisztencia, a szavazatprofil-semlegesség és a csalásbiztosság axiómájának. A tanulmány szerzői belátják, hogy ezek az axiómák egy küszöbön alapuló szabálycsaládot karakterizálnak, amelyben a legtöbb szavazatot kapó vélemény mindig bejut a bizottságba, utána viszont a konkrét szabálytól és a szavazatoktól függően két extrém helyzet alakulhat ki. Vagy minden véleményt reprezentálnak, vagy t delegált esetén azoknak az egyéneknek az aránya, akiknek a véleménye nem reprezentált, mindig 0,5t alatt van. Tanulmányunkban a társadalmi választások elméleti keretét használva illusztráljuk az axiómákat és az eredményeket.* Journal of Economic Literature (JEL) kód: C70, D71.

Suggested Citation

  • Csóka, Péter & Kondor, Gábor, 2019. "Delegációk igazságos kiválasztása társadalmi választások elméletével [Choosing a fair delegation by social choice theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 771-787.
  • Handle: RePEc:ksa:szemle:1853
    DOI: 10.18414/KSZ.2019.7-8.771
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1853
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2019.7-8.771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sato, Shin, 2013. "A sufficient condition for the equivalence of strategy-proofness and nonmanipulability by preferences adjacent to the sincere one," Journal of Economic Theory, Elsevier, vol. 148(1), pages 259-278.
    2. Attila Tasnádi, 2008. "The extent of the population paradox in the Hungarian electoral system," Public Choice, Springer, vol. 134(3), pages 293-305, March.
    3. Kóczy Á., László & Biró, Péter & Sziklai, Balázs, 2012. "Választókörzetek igazságosan? [Fair apportionment of voting districts in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1165-1186.
    4. Laszlo A. Koczy & Peter Biro & Balazs Sziklai, 2017. "US vs. European Apportionment Practices: The Conflict between Monotonicity and Proportionality," CERS-IE WORKING PAPERS 1716, Institute of Economics, Centre for Economic and Regional Studies.
    5. Biró, Péter & Kóczy, László Á. & Sziklai, Balázs, 2015. "Fair apportionment in the view of the Venice Commission’s recommendation," Mathematical Social Sciences, Elsevier, vol. 77(C), pages 32-41.
    6. Can, Burak & Storcken, Ton, 2013. "Update monotone preference rules," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 136-149.
    7. Burak Can & Peter Csoka & Emre Ergin, 2017. "How to choose a non-manipulable delegation?," CERS-IE WORKING PAPERS 1713, Institute of Economics, Centre for Economic and Regional Studies.
    8. Martin Barbie & Clemens Puppe & Attila Tasnádi, 2006. "Non-manipulable domains for the Borda count," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(2), pages 411-430, January.
    9. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    10. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
    11. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-330, March.
    12. Gaertner,Wulf, 2006. "Domain Conditions in Social Choice Theory," Cambridge Books, Cambridge University Press, number 9780521028745, September.
    13. Balázs Sziklai, 2018. "How to identify experts in a community?," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 155-173, March.
    14. Athanasoglou, Stergios, 2016. "Strategyproof and efficient preference aggregation with Kemeny-based criteria," Games and Economic Behavior, Elsevier, vol. 95(C), pages 156-167.
    15. Myerson, Roger B., 2013. "Fundamentals of Social Choice Theory," Quarterly Journal of Political Science, now publishers, vol. 8(3), pages 305-337, June.
    16. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    17. Bossert, Walter & Sprumont, Yves, 2014. "Strategy-proof preference aggregation: Possibilities and characterizations," Games and Economic Behavior, Elsevier, vol. 85(C), pages 109-126.
    18. Laszlo A. Koczy & Balazs Sziklai, 2018. "Bounds on Malapportionment," CERS-IE WORKING PAPERS 1801, Institute of Economics, Centre for Economic and Regional Studies.
    19. László Á. Kóczy & Martin Strobel, 2009. "The invariant method can be manipulated," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 291-293, October.
    20. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burak Can & Peter Csoka & Emre Ergin, 2017. "How to choose a non-manipulable delegation?," CERS-IE WORKING PAPERS 1713, Institute of Economics, Centre for Economic and Regional Studies.
    2. Can, Burak & Csóka, Péter & Ergin, Emre, 2017. "How to choose a delegation for a peace conference?," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    3. Burak Can & Péter Csóka & Emre Ergin, 2021. "How to choose a fair delegation?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1339-1373, November.
    4. Bossert, Walter & Sprumont, Yves, 2014. "Strategy-proof preference aggregation: Possibilities and characterizations," Games and Economic Behavior, Elsevier, vol. 85(C), pages 109-126.
    5. Haeringer, Guillaume & Hałaburda, Hanna, 2016. "Monotone strategyproofness," Games and Economic Behavior, Elsevier, vol. 98(C), pages 68-77.
    6. Conal Duddy, 2014. "Condorcet’s principle and the strong no-show paradoxes," Theory and Decision, Springer, vol. 77(2), pages 275-285, August.
    7. ,, 2009. "Strategy-proofness and single-crossing," Theoretical Economics, Econometric Society, vol. 4(2), June.
    8. Shin Sato, 2015. "Bounded response and the equivalence of nonmanipulability and independence of irrelevant alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 133-149, January.
    9. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    10. BOSSERT, Walter & SPRUMONT, Yves, 2012. "Strategy-proof Preference Aggregation," Cahiers de recherche 2012-10, Universite de Montreal, Departement de sciences economiques.
    11. Bock, Hans-Hermann & Day, William H. E. & McMorris, F. R., 1998. "Consensus rules for committee elections," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 219-232, May.
    12. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    13. Lederer, Patrick, 2024. "Bivariate scoring rules: Unifying the characterizations of positional scoring rules and Kemeny's rule," Journal of Economic Theory, Elsevier, vol. 218(C).
    14. Csató, László & Petróczy, Dóra Gréta, 2018. "Néhány gondolat a labdarúgás rangsorolási szabályairól a 2018. évi labdarúgó-világbajnokság európai selejtezője kapcsán [Some ideas on ranking rules in association football in the light of the Euro," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 632-649.
    15. Brady, Richard L. & Chambers, Christopher P., 2015. "Spatial implementation," Games and Economic Behavior, Elsevier, vol. 94(C), pages 200-205.
    16. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
    17. Alejandro Saporiti & Fernando Tohmé, 2006. "Single-Crossing, Strategic Voting and the Median Choice Rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 363-383, April.
    18. Alejandro Saporiti, 2006. "Strategic voting on single-crossing domains," Economics Discussion Paper Series 0617, Economics, The University of Manchester.
    19. Csató, László, 2017. "Tournaments with subsequent group stages are incentive incompatible," MPRA Paper 83269, University Library of Munich, Germany.
    20. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.

    More about this item

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.