IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1598.html
   My bibliography  Save this article

A magyar nyugdíjrendszer fenntarthatóságáról
[On the sustainability of the Hungarian pension system - the long-term effects of demographic trends]

Author

Listed:
  • Vékás, Péter
  • Bajkó, Attila
  • Maknics, Anita
  • Tóth, Krisztián

Abstract

Sok más fejlett országhoz hasonlóan Magyarországnak is szembe kell néznie az öregedő társadalom miatti problémák sokaságával, többek között a nyugdíjrendszer fenntarthatóságának kérdésével. Tanulmányunkban a Lee-Carter-modell segítségével elemezzük a következő évtizedek statisztikai alapon várható demográfiai mutatóit. A kapott eredmények felhasználásával egy nyugdíjmodellt állítottunk fel, amellyel adott makrogazdasági feltételek mellett becsüljük a nyugdíjrendszer egyenlegének jövőbeli alakulását. E modell segítségével vizsgálhatóvá válik, hogy milyen hatást gyakorolnak a nyugdíjrendszerre az előre jelzett jövőbeli népességi mutatók és feltételezett makrogazdasági és nyugdíjparaméterek. Journal of Economic Literature (JEL) kód: C53, C54, H55.

Suggested Citation

  • Vékás, Péter & Bajkó, Attila & Maknics, Anita & Tóth, Krisztián, 2015. "A magyar nyugdíjrendszer fenntarthatóságáról [On the sustainability of the Hungarian pension system - the long-term effects of demographic trends]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1229-1257.
  • Handle: RePEc:ksa:szemle:1598
    DOI: 10.18414/KSZ.2015.12.1229
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1598
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2015.12.1229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varga, Gergely, 2014. "Demográfiai átmenet, gazdasági növekedés és a nyugdíjrendszer fenntarthatósága [Demographic transition, economic growth, and sustainability of the pension system]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1279-1318.
    2. Orbán, Gábor & Palotai, Dániel, 2006. "Gazdaságpolitikai és demográfiai kihívások a magyar nyugdíjrendszerben [The Hungarian pension system: economic-policy and demographic challenges]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 583-603.
    3. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    4. Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    6. Simonovits, András, 2009. "Népességöregedés, tb-nyugdíj és megtakarítás - parametrikus nyugdíjreformok [Population aging, the public pension system, and savings: parametric pension reforms]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(4), pages 297-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simonovits, András, 2017. "Az elfelejtett nyugdíjdegresszió [The forgotten pension degression]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 650-660.
    2. László, Csaba, 2018. "A magánnyugdíjpénztári rendszer "elszámolása" ["Reckoning up" the private pension system]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 861-902.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simonovits, András, 2015. "Hossz- és keresztmetszeti egyensúly az életpálya finanszírozásában [Longitudinal and cross-sectional equilibrium in lifetime financing]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 611-620.
    2. Njenga Carolyn N & Sherris Michael, 2011. "Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(2), pages 1-54, July.
    3. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    4. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    5. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    6. Reese, Simon, 2015. "Asymptotic Inference in the Lee-Carter Model for Modelling Mortality Rates," Working Papers 2015:16, Lund University, Department of Economics.
    7. Mason, Carl N. & Miller, Timothy, 2018. "International projections of age specific healthcare consumption: 2015–2060," The Journal of the Economics of Ageing, Elsevier, vol. 12(C), pages 202-217.
    8. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    9. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    10. repec:hum:wpaper:sfb649dp2008-052 is not listed on IDEAS
    11. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    12. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    13. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    14. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    15. Alonso, Pablo J., 2015. "Hierarchical Lee-Carter model estimation through data cloning applied to demographically linked countries," DES - Working Papers. Statistics and Econometrics. WS ws1510, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Jackie Li & Atsuyuki Kogure, 2021. "Bayesian Mixture Modelling for Mortality Projection," Risks, MDPI, vol. 9(4), pages 1-12, April.
    17. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    18. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    19. Jackie Li, 2014. "An application of MCMC simulation in mortality projection for populations with limited data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(1), pages 1-48.
    20. Broeders, Dirk & Mehlkopf, Roel & van Ool, Annick, 2021. "The economics of sharing macro-longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 440-458.
    21. Peter Congdon, 2006. "A model for geographical variation in health and total life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 14(9), pages 157-178.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • H55 - Public Economics - - National Government Expenditures and Related Policies - - - Social Security and Public Pensions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.