IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v45y2018i3d10.1007_s11116-016-9757-8.html
   My bibliography  Save this article

Accuracy and bias of subjective travel time estimates

Author

Listed:
  • Einat Tenenboim

    (Technion)

  • Yoram Shiftan

    (Technion)

Abstract

Travel time is the main factor affecting individuals’ travel-related decisions. Understanding the way people experience and estimate travel time is critical for a better insight regarding travel behavior and consequently for planning transport projects and guiding new policies. Whereas most travel-demand models employ objective time data, the use of subjective time data was proposed to improve model estimation. This study draws on fundamental as well as on recent psychological theories, investigating the discrepancy between subjective and objective travel times. According to one of these theories, the return trip effect, travelers tend to report shorter travel times for return trips compared to outbound trips. In a questionnaire, 174 respondents provided pre-trip time estimates. One group estimated travel times from home to local shopping areas, whereas a second group estimated times of the reverse trips. For comparison, objective times were obtained from Waze, a navigation application providing real-time information. Whereas 48% of time estimates were found accurate, over-estimates were 2.5 times more frequent than under-estimates. A return trip effect was found only for trips to/from poorly familiar shopping areas, highlighting the role of destination familiarity. Interestingly, respondents accurately estimated toll-trips but over-estimated non-toll trips. Presumably, merely thinking about paying the toll led individuals to form expectations of travel time savings in exchange. Linear and non-linear regression models for predicting subjective estimates revealed significant effects for trip frequency, trip direction, destination familiarity, toll-road and gender, amongst other variables. The results offer a fertile basis for incorporating subjective time in demand models.

Suggested Citation

  • Einat Tenenboim & Yoram Shiftan, 2018. "Accuracy and bias of subjective travel time estimates," Transportation, Springer, vol. 45(3), pages 945-969, May.
  • Handle: RePEc:kap:transp:v:45:y:2018:i:3:d:10.1007_s11116-016-9757-8
    DOI: 10.1007/s11116-016-9757-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9757-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9757-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grotenhuis, Jan-Willem & Wiegmans, Bart W. & Rietveld, Piet, 2007. "The desired quality of integrated multimodal travel information in public transport: Customer needs for time and effort savings," Transport Policy, Elsevier, vol. 14(1), pages 27-38, January.
    2. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    3. P N O'Farrell & J Markham, 1974. "Commuter Perceptions of Public Transport Work Journeys," Environment and Planning A, , vol. 6(1), pages 79-100, February.
    4. Harold J. Leavitt, 1954. "A Note on Some Experimental Findings About the Meanings of Price," The Journal of Business, University of Chicago Press, vol. 27, pages 205-205.
    5. Cantillo, Víctor & Heydecker, Benjamin & de Dios Ortúzar, Juan, 2006. "A discrete choice model incorporating thresholds for perception in attribute values," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 807-825, November.
    6. Eran Ben-Elia & Ido Erev & Yoram Shiftan, 2008. "The combined effect of information and experience on drivers’ route-choice behavior," Transportation, Springer, vol. 35(2), pages 165-177, March.
    7. Shiftan, Yoram & Shefer, Daniel, 2009. "Evaluating the impact of transport projects: Lessons for other disciplines," Evaluation and Program Planning, Elsevier, vol. 32(4), pages 311-314, November.
    8. Maya Abou-Zeid & Moshe Ben-Akiva, 2012. "Well-being and activity-based models," Transportation, Springer, vol. 39(6), pages 1189-1207, November.
    9. Campbell, James F., 1992. "Selecting routes to minimize urban travel time," Transportation Research Part B: Methodological, Elsevier, vol. 26(4), pages 261-274, August.
    10. Hornik, Jacob, 1984. "Subjective vs. Objective Time Measures: A Note on the Perception of Time in Consumer Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 11(1), pages 615-618, June.
    11. Dziekan, Katrin & Kottenhoff, Karl, 2007. "Dynamic at-stop real-time information displays for public transport: effects on customers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 489-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einat Tenenboim & Nira Munichor & Yoram Shiftan, 2023. "Justifying toll payment with biased travel time estimates: Behavioral findings and route choice modeling," Transportation, Springer, vol. 50(2), pages 477-511, April.
    2. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    3. Leroutier, Marion & Quirion, Philippe, 2023. "Tackling Car Emissions in Urban Areas: Shift, Avoid, Improve," Ecological Economics, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einat Tenenboim & Nira Munichor & Yoram Shiftan, 2023. "Justifying toll payment with biased travel time estimates: Behavioral findings and route choice modeling," Transportation, Springer, vol. 50(2), pages 477-511, April.
    2. Jochem, Patrick & Lisson, Christopher & Khanna, Arpita Asha, 2021. "The role of coordination costs in mode choice decisions: A case study of German cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 31-44.
    3. Mulley, Corinne & Clifton, Geoffrey Tilden & Balbontin, Camila & Ma, Liang, 2017. "Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 111-132.
    4. Thierry Blayac & Maïté Stéphan, 2022. "Travel information provision and commuter behavior changes: Evidence from a french metropolis," Post-Print hal-03649092, HAL.
    5. Mahmood Mahmoodi Nesheli & Avishai (Avi) Ceder & Robin Brissaud, 2017. "Public transport service-quality elements based on real-time operational tactics," Transportation, Springer, vol. 44(5), pages 957-975, September.
    6. Wen Hua & Ghim Ping Ong, 2018. "Effect of information contagion during train service disruption for an integrated rail-bus transit system," Public Transport, Springer, vol. 10(3), pages 571-594, December.
    7. Frei, Charlotte & Mahmassani, Hani S. & Frei, Andreas, 2015. "Making time count: Traveler activity engagement on urban transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 58-70.
    8. Ben-Dor, Golan & Ogulenko, Aleksey & Klein, Ido & Ben-Elia, Eran & Benenson, Itzhak, 2024. "Simulation-based policy evaluation of monetary car driving disincentives in Jerusalem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    9. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    10. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    11. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    12. Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
    13. Waara, Nina & Brundell-Freij, Karin & Risser, Ralf & Ståhl, Agneta, 2015. "Feasible provision of targeted traveler information in public transportation: Segmentation based on functional limitations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 164-173.
    14. Van Acker, Veronique & Ho, Loan & Mulley, Corinne, 2021. "“Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 214-227.
    15. Zhang, Qianran & Ma, Shoufeng & Tian, Junfang & Rose, John M. & Jia, Ning, 2022. "Mode choice between autonomous vehicles and manually-driven vehicles: An experimental study of information and reward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 24-39.
    16. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    17. Tang, Yue & Gao, Song & Ben-Elia, Eran, 2017. "An exploratory study of instance-based learning for route choice with random travel times," Journal of choice modelling, Elsevier, vol. 24(C), pages 22-35.
    18. Li, Tianhao & Chen, Peng & Tian, Ye, 2021. "Personalized incentive-based peak avoidance and drivers’ travel time-savings," Transport Policy, Elsevier, vol. 100(C), pages 68-80.
    19. Guo, Zhan, 2011. "Mind the map! The impact of transit maps on path choice in public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 625-639, August.
    20. Gammer, Nick & Cherrett, Tom & Gutteridge, Christopher, 2014. "Disseminating real-time bus arrival information via QRcode tagged bus stops: a case study of user take-up and reaction in Southampton, UK," Journal of Transport Geography, Elsevier, vol. 34(C), pages 254-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:3:d:10.1007_s11116-016-9757-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.