IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v42y2015i4p581-595.html
   My bibliography  Save this article

Imputing trip purposes for long-distance travel

Author

Listed:
  • Yijing Lu
  • Lei Zhang

Abstract

Planning and policy analysis at the national, state and inter-regional corridor levels depends on reliable information and forecasts about long-distance travel. Emerging passive data collection technologies such as GPS, smartphones, and social media provide the opportunity for researchers and practitioners to potentially supplement or replace traditional long-distance travel surveys. However, certain important trip information, such as trip purpose, travel mode, and travelers’ socio-demographic characteristics, is missing from passively collected travel data. One promising solution to this data issue is to impute the missing information based on supplementary data (e.g., land use) and advanced statistical or data mining algorithms. This paper develops machine learning methods, including decision tree and meta-learning, to estimate trip purposes for long-distance passenger travel. A passively collected long-distance trip dataset is simulated from the 1995 American Travel Survey for the development and validation of the machine learning methods. The predictive accuracy of the proposed methods is evaluated for several scenarios varying with trip purposes and the extent of data availability as inputs. This research design will provide not only a practically useful approach for long-distance trip purpose imputation, but also generate valuable insights for future long-distance travel surveys. Results show that the accuracy of the trip purpose imputation methods based on all available data decreases from 95 % with two purposes (business and non-business) to 77 % with four purposes (business, personal business, social visit, and leisure). Based on a two-purpose scheme, the predictive accuracy of the imputation algorithms decreases from 95 % when all input data is used (a full-information model), to 72 % with a minimum information model that only utilizes the passively collected data. If traveler’s socio-demographic characteristics are available (possibly through other imputation models), the predictive accuracy only decreases from 95 to 91 %. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Yijing Lu & Lei Zhang, 2015. "Imputing trip purposes for long-distance travel," Transportation, Springer, vol. 42(4), pages 581-595, July.
  • Handle: RePEc:kap:transp:v:42:y:2015:i:4:p:581-595
    DOI: 10.1007/s11116-015-9595-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-015-9595-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-015-9595-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Zhang & Frank Southworth & Chenfeng Xiong & Anthon Sonnenberg, 2012. "Methodological Options and Data Sources for the Development of Long-Distance Passenger Travel Demand Models: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 399-433, April.
    2. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    3. Du, Jianhe & Aultman-Hall, Lisa, 2007. "Increasing the accuracy of trip rate information from passive multi-day GPS travel datasets: Automatic trip end identification issues," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 220-232, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Wang & Xuedong Yan & Yu Zhou & Qingwan Xue, 2017. "Influencing Mechanism of Potential Factors on Passengers’ Long-Distance Travel Mode Choices Based on Structural Equation Modeling," Sustainability, MDPI, vol. 9(11), pages 1-22, October.
    2. Krause, Cory M. & Zhang, Lei, 2019. "Short-term travel behavior prediction with GPS, land use, and point of interest data," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 349-361.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Ishant & Mishra, Sabyasachee & Kabiri, Aliakbar & Ghader, Sepehr & Zhang, Lei, 2024. "Use of passive data for determining link level long distance trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    3. Dowds, Jonathan & Harvey, Chester & LaMondia, Jeff & Howerter, Sarah & Ullman, Hannah & Aultman-Hall, Lisa, 2018. "Advancing Understanding of Long-Distance and Intercity Travel with Diverse Data Sources," Institute of Transportation Studies, Working Paper Series qt1cf2j4zk, Institute of Transportation Studies, UC Davis.
    4. Gingerich, Kevin & Maoh, Hanna & Anderson, William, 2016. "Expansion of a GPS Truck Trip Sample to Remove Bias and Obtain Representative Flows for Ontario," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319310, Transportation Research Forum.
    5. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    6. Roy, Avipsa & Fuller, Daniel & Nelson, Trisalyn & Kedron, Peter, 2022. "Assessing the role of geographic context in transportation mode detection from GPS data," Journal of Transport Geography, Elsevier, vol. 100(C).
    7. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    9. Tao Feng & Harry J.P. Timmermans, 2016. "Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(2), pages 180-194, March.
    10. Wenyun Tang & David Levinson, 2014. "An empirical study of the deviation between actual and shortest travel time paths," Working Papers 000125, University of Minnesota: Nexus Research Group.
    11. Reinau, Kristian Hegner & Harder, Henrik & Weber, Michael, 2015. "The SMS–GPS-Trip method: A new method for collecting trip information in travel behavior research," Telecommunications Policy, Elsevier, vol. 39(3), pages 363-373.
    12. Bulu, Melih, 2014. "Upgrading a city via technology," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 63-67.
    13. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    14. Laranjeiro, Patrícia F. & Merchán, Daniel & Godoy, Leonardo A. & Giannotti, Mariana & Yoshizaki, Hugo T.Y. & Winkenbach, Matthias & Cunha, Claudio B., 2019. "Using GPS data to explore speed patterns and temporal fluctuations in urban logistics: The case of São Paulo, Brazil," Journal of Transport Geography, Elsevier, vol. 76(C), pages 114-129.
    15. Hong, Ye & Stüdeli, Emanuel & Raubal, Martin, 2023. "Evaluating geospatial context information for travel mode detection," Journal of Transport Geography, Elsevier, vol. 113(C).
    16. Ying Hui & Mengtao Ding & Kun Zheng & Dong Lou, 2017. "Observing Trip Chain Characteristics of Round-Trip Carsharing Users in China: A Case Study Based on GPS Data in Hangzhou City," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    17. Mofeng Yang & Yixuan Pan & Aref Darzi & Sepehr Ghader & Chenfeng Xiong & Lei Zhang, 2022. "A data-driven travel mode share estimation framework based on mobile device location data," Transportation, Springer, vol. 49(5), pages 1339-1383, October.
    18. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    19. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    20. Shen, Yue & Kwan, Mei-Po & Chai, Yanwei, 2013. "Investigating commuting flexibility with GPS data and 3D geovisualization: a case study of Beijing, China," Journal of Transport Geography, Elsevier, vol. 32(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:42:y:2015:i:4:p:581-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.