IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p1943-d116504.html
   My bibliography  Save this article

Influencing Mechanism of Potential Factors on Passengers’ Long-Distance Travel Mode Choices Based on Structural Equation Modeling

Author

Listed:
  • Yun Wang

    (MOE Key Laboratory for Urban Transportation Complex System Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Xuedong Yan

    (MOE Key Laboratory for Urban Transportation Complex System Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Yu Zhou

    (MOE Key Laboratory for Urban Transportation Complex System Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Qingwan Xue

    (MOE Key Laboratory for Urban Transportation Complex System Theory and Technology, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Understanding the public transportation users’ preferences to long-distance travel modes would contribute to reasonable developing policies and resource allocation. This paper aims to explore the influencing mechanism of potential factors on the long-distance travel mode choice. A survey was conducted to collect the data. The analysis of variance (ANOVA) approach was applied to analyze the correlation relationship between potential factors and travel mode choice behavior. The results showed that, except gender, service demand for safety and departure time, all of the other factors significantly influenced the travel mode choice behavior. Specifically, passengers with higher education level and income level were more likely to choose high-speed railway (HSR) and plane; passengers caring about travel expense were more likely to choose ordinary train, whereas plane and HSR may be chosen more by passengers caring more about comfort, punctuality and efficiency; the more passengers were satisfied with travel modes’ service performance, the more they would be likely to choose them; the most competitive distance ranges for coach, ordinary train, HSR and plane were below 500 km, 500–1000 km, 500–1500 km and over 1500 km, respectively. Besides, the structural equation modeling (SEM) technique was applied to investigate the influencing mechanism of factors on the long-distance travel mode choice. The results revealed that travel distance was the most significant variable directly influencing passengers’ mode choices, followed by the service demand, performance evaluation, and personal attributes. Furthermore, personal attributes were verified to have an indirect effect on travel mode choice behavior by significantly affecting the service demand and performance evaluation.

Suggested Citation

  • Yun Wang & Xuedong Yan & Yu Zhou & Qingwan Xue, 2017. "Influencing Mechanism of Potential Factors on Passengers’ Long-Distance Travel Mode Choices Based on Structural Equation Modeling," Sustainability, MDPI, vol. 9(11), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1943-:d:116504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/1943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/1943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yushun & Lin, Lian-Shin, 2010. "Structural equation-based latent growth curve modeling of watershed attribute-regulated stream sensitivity to reduced acidic deposition," Ecological Modelling, Elsevier, vol. 221(17), pages 2086-2094.
    2. Sharmeen, Fariya & Arentze, Theo & Timmermans, Harry, 2014. "An analysis of the dynamics of activity and travel needs in response to social network evolution and life-cycle events: A structural equation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 159-171.
    3. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    4. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    5. Su, Fengming & Bell, Michael G.H., 2009. "Transport for older people: Characteristics and solutions," Research in Transportation Economics, Elsevier, vol. 25(1), pages 46-55.
    6. Román, Concepción & Espino, Raquel & Martín, Juan Carlos, 2007. "Competition of high-speed train with air transport: The case of Madrid–Barcelona," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 277-284.
    7. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    8. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    9. Yijing Lu & Lei Zhang, 2015. "Imputing trip purposes for long-distance travel," Transportation, Springer, vol. 42(4), pages 581-595, July.
    10. Dargay, Joyce M. & Clark, Stephen, 2012. "The determinants of long distance travel in Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 576-587.
    11. Yang, Hangjun & Zhang, Anming, 2012. "Effects of high-speed rail and air transport competition on prices, profits and welfare," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1322-1333.
    12. Mabit, Stefan L. & Rich, Jeppe & Burge, Peter & Potoglou, Dimitris, 2013. "Valuation of travel time for international long-distance travel – results from the Fehmarn Belt stated choice experiment," Journal of Transport Geography, Elsevier, vol. 33(C), pages 153-161.
    13. Caleb Van Nostrand & Vijayaraghavan Sivaraman & Abdul Pinjari, 2013. "Analysis of long-distance vacation travel demand in the United States: a multiple discrete–continuous choice framework," Transportation, Springer, vol. 40(1), pages 151-171, January.
    14. Mar González-Savignat, 2004. "Competition in Air Transport," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 77-107, January.
    15. Arbués, Pelayo & Baños, José F. & Mayor, Matías & Suárez, Patricia, 2016. "Determinants of ground transport modal choice in long-distance trips in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 131-143.
    16. Santos, Georgina & Maoh, Hanna & Potoglou, Dimitris & von Brunn, Thomas, 2013. "Factors influencing modal split of commuting journeys in medium-size European cities," Journal of Transport Geography, Elsevier, vol. 30(C), pages 127-137.
    17. Paul Dion, 2008. "Interpreting Structural Equation Modeling Results: A Reply to Martin and Cullen," Journal of Business Ethics, Springer, vol. 83(3), pages 365-368, December.
    18. Castro Campos, Bente & Ren, Yanjun & Petrick, Martin, 2016. "The impact of education on income inequality between ethnic minorities and Han in China," China Economic Review, Elsevier, vol. 41(C), pages 253-267.
    19. Lu, Qing-Chang & Zhang, Junyi & Peng, Zhong-Ren & Rahman, ABM Sertajur, 2014. "Inter-city travel behaviour adaptation to extreme weather events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 148-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    2. Min Su & Weixin Luan & Liuyan Yuan & Rui Zhang & Zhenchao Zhang, 2019. "Sustainability Development of High-Speed Rail and Airline—Understanding Passengers’ Preferences: A Case Study of the Beijing–Shanghai Corridor," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    3. Xinshuo Hou, 2019. "High-Speed Railway and City Tourism in China: A Quasi-Experimental Study on HSR Operation," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    4. Ping Yin & Francesca Pagliara & Alan Wilson, 2019. "How Does High-Speed Rail Affect Tourism? A Case Study of the Capital Region of China," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    5. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    6. Jin Qin & Wenxuan Qu & Xuanke Wu & Yijia Zeng, 2019. "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    7. Van Acker, Veronique & Kessels, Roselinde & Palhazi Cuervo, Daniel & Lannoo, Steven & Witlox, Frank, 2020. "Preferences for long-distance coach transport: Evidence from a discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 759-779.
    8. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    9. Cheng, Junmei & Chen, Zhenhua, 2021. "Impact of high-speed rail on the operational capacity of conventional rail in China," Transport Policy, Elsevier, vol. 110(C), pages 354-367.
    10. Yan Han & Wanying Li & Shanshan Wei & Tiantian Zhang, 2018. "Research on Passenger’s Travel Mode Choice Behavior Waiting at Bus Station Based on SEM-Logit Integration Model," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    11. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    12. Wang, Kun & Xia, Wenyi & Zhang, Anming & Zhang, Qiong, 2018. "Effects of train speed on airline demand and price: Theory and empirical evidence from a natural experiment," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 99-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Su & Weixin Luan & Liuyan Yuan & Rui Zhang & Zhenchao Zhang, 2019. "Sustainability Development of High-Speed Rail and Airline—Understanding Passengers’ Preferences: A Case Study of the Beijing–Shanghai Corridor," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    2. Tsunoda, Yushi, 2018. "Transportation policy for high-speed rail competing with airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 350-360.
    3. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    4. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    5. Jiang, Changmin & Zhang, Anming, 2016. "Airline network choice and market coverage under high-speed rail competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 248-260.
    6. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    7. Li, Zhi-Chun & Tu, Ningwen & Fu, Xiaowen & Sheng, Dian, 2022. "Modeling the effects of airline and high-speed rail cooperation on multi-airport systems: The implications on congestion, competition and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 448-478.
    8. Li, Zhi-Chun & Sheng, Dian, 2016. "Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 397-410.
    9. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    10. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    11. Capozza, Claudia, 2015. "The effect of rail travel time on airline fares: first evidence from the Italian passenger market," Working Papers 15_3, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    12. Bergantino, Angela S. & Capozza, Claudia & Capurso, Mauro, 2015. "The impact of open access on intra- and inter-modal rail competition. A national level analysis in Italy," Transport Policy, Elsevier, vol. 39(C), pages 77-86.
    13. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    14. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    15. Capozza, Claudia, 2016. "The effect of rail travel time on airline fares: First evidence from the Italian passenger market," Economics of Transportation, Elsevier, vol. 6(C), pages 18-24.
    16. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    17. Varun Raturi & Ashish Verma, 2019. "Competition between High Speed Rail and Conventional Transport Modes: Market Entry Game Analysis on Indian Corridors," Networks and Spatial Economics, Springer, vol. 19(3), pages 763-790, September.
    18. Daqing Zu & Kang Cao & Jian Xu, 2021. "The Impacts of Transportation Sustainability on Higher Education in China," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    19. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    20. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1943-:d:116504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.