IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v38y2012i4p441-453.html
   My bibliography  Save this article

Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach

Author

Listed:
  • Wikil Kwak
  • Yong Shi
  • Gang Kou

Abstract

No abstract is available for this item.

Suggested Citation

  • Wikil Kwak & Yong Shi & Gang Kou, 2012. "Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 441-453, May.
  • Handle: RePEc:kap:rqfnac:v:38:y:2012:i:4:p:441-453
    DOI: 10.1007/s11156-011-0238-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11156-011-0238-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-011-0238-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Hsin-Hung Chen, 2008. "The Timescale Effects of Corporate Governance Measure on Predicting Financial Distress," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 35-46.
    3. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    4. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    5. Grice, John Stephen & Dugan, Michael T, 2001. "The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher," Review of Quantitative Finance and Accounting, Springer, vol. 17(2), pages 151-166, September.
    6. Nikola A. Tarashev, 2008. "An Empirical Evaluation of Structural Credit-Risk Models," International Journal of Central Banking, International Journal of Central Banking, vol. 4(1), pages 1-53, March.
    7. Joon-Kyung Kim & Chung H. Lee, 2002. "Insolvency in the Corporate Sector and Financial Crisis in Korea," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 7(2), pages 267-281.
    8. Yong Shi & Yi Peng & Gang Kou & Zhengxin Chen, 2005. "Classifying Credit Card Accounts For Business Intelligence And Decision Making: A Multiple-Criteria Quadratic Programming Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 581-599.
    9. Yong Shi & Yi Peng & Weixuan Xu & Xiaowo Tang, 2002. "Data Mining Via Multiple Criteria Linear Programming: Applications In Credit Card Portfolio Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 131-151.
    10. Lili Sun, 2007. "A re-evaluation of auditors’ opinions versus statistical models in bankruptcy prediction," Review of Quantitative Finance and Accounting, Springer, vol. 28(1), pages 55-78, January.
    11. Takahashi, Kichinosuke & Kurokawa, Yukiharu & Watase, Kazunori, 1984. "Corporate bankruptcy prediction in Japan," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 229-247, June.
    12. Gregory Kane & Frederick Richardson & Uma Velury, 2006. "The Relevance of Stock and Flow-Based Reporting Information In Assessing the Likelihood of Emergence from Corporate Financial Distress," Review of Quantitative Finance and Accounting, Springer, vol. 26(1), pages 5-22, February.
    13. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    14. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    15. Gang Kou & Yi Peng & Yong Shi & Morgan Wise & Weixuan Xu, 2005. "Discovering Credit Cardholders’ Behavior by Multiple Criteria Linear Programming," Annals of Operations Research, Springer, vol. 135(1), pages 261-274, March.
    16. Li-Chiu Chi & Tseng-Chung Tang, 2006. "Bankruptcy Prediction: Application of Logit Analysis in Export Credit Risks," Australian Journal of Management, Australian School of Business, vol. 31(1), pages 17-27, June.
    17. Bongini, Paola & Ferri, Giovanni & Hahm, Hongjoo, 2000. "Corporate Bankruptcy in Korea: Only the Strong Survive?," The Financial Review, Eastern Finance Association, vol. 35(4), pages 31-50, November.
    18. Eliezer Fich & Steve Slezak, 2008. "Can corporate governance save distressed firms from bankruptcy? An empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 30(2), pages 225-251, February.
    19. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    20. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    21. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    22. Yong Shi, 2001. "Multiple Criteria and Multiple Constraint Levels Linear Programming:Concepts, Techniques and Applications," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4000, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 61(C).
    2. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    3. Cao Dinh Kien & Nguyen Huu That, 2022. "Innovation Capabilities in the Banking Sector Post-COVID-19 Period: The Moderating Role of Corporate Governance in an Emerging Country," IJFS, MDPI, vol. 10(2), pages 1-14, June.
    4. Evangelos C. Charalambakis & Ian Garrett, 2016. "On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 1-28, July.
    5. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    6. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    7. Özgür Arslan-Ayaydin & Chris Florackis & Aydin Ozkan, 2014. "Financial flexibility, corporate investment and performance: evidence from financial crises," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 211-250, February.
    8. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    9. Qazi Awais Amin & Tom Williamson, 2021. "Firms cash management, adjustment cost and its impact on firms’ speed of adjustment: a cross country analysis," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 53-89, January.
    10. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    3. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    4. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    5. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    6. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    7. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    8. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    9. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    10. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    11. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    12. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    13. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    14. Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
    15. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    16. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    17. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    18. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    19. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    20. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.

    More about this item

    Keywords

    Korean; Bankruptcy; Data mining; Multiple criteria linear programming; C61; G33;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:38:y:2012:i:4:p:441-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.