IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v19y2019i4d10.1007_s11067-019-9442-5.html
   My bibliography  Save this article

Stochastic Ridesharing User Equilibrium in Transport Networks

Author

Listed:
  • Chen-Yang Yan

    (University of Science and Technology of China
    The Smart City Research Institute of CETC)

  • Mao-Bin Hu

    (University of Science and Technology of China)

  • Rui Jiang

    (Beijing Jiaotong University)

  • Jiancheng Long

    (Hefei University of Technology)

  • Jin-Yong Chen

    (University of Science and Technology of China)

  • Hao-Xiang Liu

    (Hefei University of Technology)

Abstract

With the development of the Internet and mobile phone technology, it is much easier to access ridesharing information via mobile applications. In this paper, the relationship between the demand of ridesharing passengers (RPs), ridesharing drivers (RDs) and solo drivers (SDs) in a ridesharing compensation scheme is studied by a stochastic ridesharing user equilibrium (SRUE), which contains a mode choice model and a route choice model. The mode choice model and the route choice model influence each other. The SRUE is first expressed as a fixed-point problem mathematically. Six possible states of OD pairs are discussed. Then the existence of SRUE is proved. The method of successive weighted averages is adopted to solve the problem. It is found that there will be a higher demand of ridesharing passengers for journeys with longer travel time. Moreover, with the increase of the ridesharing compensation, the demand of ridesharing passengers is not always decreasing, and the demand of ridesharing drivers is not always increasing.

Suggested Citation

  • Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
  • Handle: RePEc:kap:netspa:v:19:y:2019:i:4:d:10.1007_s11067-019-9442-5
    DOI: 10.1007/s11067-019-9442-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-019-9442-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-019-9442-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oren Bahat & Shlomo Bekhor, 2016. "Incorporating Ridesharing in the Static Traffic Assignment Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 1125-1149, December.
    2. Zhiyuan Liu & Wen Yi & Shuaian Wang & Jun Chen, 2017. "On the Uniqueness of User Equilibrium Flow with Speed Limit," Networks and Spatial Economics, Springer, vol. 17(3), pages 763-775, September.
    3. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    4. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    5. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    6. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    7. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    8. Yin, Yafeng & Yang, Hai, 2003. "Simultaneous determination of the equilibrium market penetration and compliance rate of advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 165-181, February.
    9. Hai-Jun Huang & Tian-Liang Liu & Xiaolei Guo & Hai Yang, 2011. "Inefficiency of Logit-Based Stochastic User Equilibrium in a Traffic Network Under ATIS," Networks and Spatial Economics, Springer, vol. 11(2), pages 255-269, June.
    10. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    11. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    12. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    13. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    14. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    15. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    16. Long, Jiancheng & Gao, Ziyou & Zhang, Haozhi & Szeto, W.Y., 2010. "A turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 206(3), pages 569-578, November.
    17. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thays A. Oliveira & Yuri B. Gabrich & Helena Ramalhinho & Miquel Oliver & Miri W. Cohen & Luiz S. Ochi & Serigne Gueye & Fábio Protti & Alysson A. Pinto & Diógenes V. M. Ferreira & Igor M. Coelho & Vi, 2020. "Mobility, Citizens, Innovation and Technology in Digital and Smart Cities," Future Internet, MDPI, vol. 12(2), pages 1-27, January.
    2. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    3. Rui Yao & Shlomo Bekhor, 2021. "A Dynamic Tree Algorithm for Peer-to-Peer Ridesharing Matching," Networks and Spatial Economics, Springer, vol. 21(4), pages 801-837, December.
    4. Vizuete-Luciano, Emili & Guillén-Pujadas, Miguel & Alaminos, David & Merigó-Lindahl, José María, 2023. "Taxi and urban mobility studies: A bibliometric analysis," Transport Policy, Elsevier, vol. 133(C), pages 144-155.
    5. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    6. Li, Tongfei & Ge, Yao & Xiong, Jie & Xu, Min & Wu, Jianjun & Sun, Huijun, 2024. "Ridesharing user equilibrium model without the en-route transfer: An OD-based link-node formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    7. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    8. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    9. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    2. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    3. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    4. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.
    5. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    6. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    7. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    8. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    9. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    10. Khooban, Zohreh & Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y., 2015. "Mixed network design using hybrid scatter search," European Journal of Operational Research, Elsevier, vol. 247(3), pages 699-710.
    11. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    12. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    13. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    14. Maëlle Zimmermann & Emma Frejinger & Patrice Marcotte, 2021. "A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks," Transportation Science, INFORMS, vol. 55(3), pages 574-591, May.
    15. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    16. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    17. Qi Zhong & Lixin Miao, 2024. "Reliability-Based Mixed Traffic Equilibrium Problem Under Endogenous Market Penetration of Connected Autonomous Vehicles and Uncertainty in Supply," Networks and Spatial Economics, Springer, vol. 24(2), pages 461-505, June.
    18. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    19. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
    20. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:19:y:2019:i:4:d:10.1007_s11067-019-9442-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.