IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002795.html
   My bibliography  Save this article

A stochastic ridesharing user equilibrium model with origin-destination-based ride-matching strategy

Author

Listed:
  • Du, Muqing
  • Zhou, Jiankun
  • Li, Guoyuan
  • Tan, Heqing
  • Chen, Anthony

Abstract

Ridesharing, as an emerging mode of modern urban transportation, has gained widespread popularity due to its ability to improve convenience and reduce the expenses in daily travel. To capture its impact on the network-wide traffic flow pattern, this paper develops a new variational inequality (VI) formulation for modeling the stochastic ridesharing user equilibrium (SRUE) problem considering an origin–destination (O-D) -based ride-matching strategy. The proposed SRUE problem is formulated based on a hierarchical logit choice model to depict the multi-stage decision-making (i.e., role choice, ride-matching, and route choice) of the ridesharing travelers. The SRUE model also reflects a two-sided market equilibrium considering the interaction effect between the ridesharing market and the road traffic equilibrium market. The logit choice model captures the ride-matching problem between the drivers and the passengers traveling on the same/different O-D pairs. Moreover, the lower- and upper-bound constraints for a ridesharing driver picking up passengers are established at the O-D level. For solving the SRUE model with O-D-based ride-matching constraints, the Lagrangian dual method (LDM) is adopted by incorporating the Barzilai-Borwein (BB) step size to update the dual variables, which accelerates the convergence of the LDM. Three numerical examples are conducted to illustrate the features of the proposed SRUE model and demonstrate the performance of the solution algorithm.

Suggested Citation

  • Du, Muqing & Zhou, Jiankun & Li, Guoyuan & Tan, Heqing & Chen, Anthony, 2024. "A stochastic ridesharing user equilibrium model with origin-destination-based ride-matching strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002795
    DOI: 10.1016/j.tre.2024.103688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oren Bahat & Shlomo Bekhor, 2016. "Incorporating Ridesharing in the Static Traffic Assignment Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 1125-1149, December.
    2. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    4. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    5. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    6. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    7. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    8. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    9. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    10. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    11. Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
    12. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    13. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    14. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    15. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    16. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    17. Wang, Xiaolei & Wang, Jun & Guo, Lei & Liu, Wei & Zhang, Xiaoning, 2021. "A convex programming approach for ridesharing user equilibrium under fixed driver/rider demand," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 33-51.
    18. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    19. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    20. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    21. Zhou, Zhong & Chen, Anthony & Wong, S.C., 2009. "Alternative formulations of a combined trip generation, trip distribution, modal split, and trip assignment model," European Journal of Operational Research, Elsevier, vol. 198(1), pages 129-138, October.
    22. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    23. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    24. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    25. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    26. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    27. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    28. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    2. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    3. Li, Tongfei & Ge, Yao & Xiong, Jie & Xu, Min & Wu, Jianjun & Sun, Huijun, 2024. "Ridesharing user equilibrium model without the en-route transfer: An OD-based link-node formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    4. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    6. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    7. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    8. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    10. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.
    11. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    12. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    13. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    14. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    15. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    16. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Dawei Li & Yiping Liu & Yuchen Song & Zhenghao Ye & Dongjie Liu, 2022. "A Framework for Assessing Resilience in Urban Mobility: Incorporating Impact of Ridesharing," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    18. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    19. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    20. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.