IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i3p574-591.html
   My bibliography  Save this article

A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks

Author

Listed:
  • Maëlle Zimmermann

    (Department of Computer Science and Operations Research, Université de Montréal, Montréal, Quebec H3T 1N8, Canada; Interuniversity Research Centre on Enterprise Networks, Logistics, and Transportation, Montréal, Quebec H3T 1N8, Canada)

  • Emma Frejinger

    (Department of Computer Science and Operations Research, Université de Montréal, Montréal, Quebec H3T 1N8, Canada; Interuniversity Research Centre on Enterprise Networks, Logistics, and Transportation, Montréal, Quebec H3T 1N8, Canada)

  • Patrice Marcotte

    (Department of Computer Science and Operations Research, Université de Montréal, Montréal, Quebec H3T 1N8, Canada; Interuniversity Research Centre on Enterprise Networks, Logistics, and Transportation, Montréal, Quebec H3T 1N8, Canada)

Abstract

In the realm of traffic assignment over a network involving rigid arc capacities, the aim of the present work is to generalize the model of Marcotte, Nguyen, and Schoeb [Marcotte P, Nguyen S, Schoeb A (2004) A strategic flow model of traffic assignment in static capacitated networks. Oper. Res. 52(2):191–212.] by casting it within a stochastic user equilibrium framework. The strength of the proposed model is to incorporate two sources of stochasticity stemming, respectively, from the users’ imperfect knowledge regarding arc costs (represented by a discrete choice model) and the probability of not accessing saturated arcs. Moreover, the arc-based formulation extends the Markovian traffic equilibrium model of Baillon and Cominetti [Baillon JB, Cominetti R ( 2008 ) Markovian traffic equilibrium. Math. Programming 111(1-2):33–56.] through the explicit consideration of capacities. This paper is restricted to the case of acyclic networks, for which we present solution algorithms and numerical experiments.

Suggested Citation

  • Maëlle Zimmermann & Emma Frejinger & Patrice Marcotte, 2021. "A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks," Transportation Science, INFORMS, vol. 55(3), pages 574-591, May.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:574-591
    DOI: 10.1287/trsc.2020.1033
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2020.1033
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. Larsson, Torbjörn & Patriksson, Michael, 1999. "Side constrained traffic equilibrium models-- analysis, computation and applications," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 233-264, May.
    4. Wie, Byung-Wook & Tobin, Roger L. & Carey, Malachy, 2002. "The existence, uniqueness and computation of an arc-based dynamic network user equilibrium formulation," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 897-918, December.
    5. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    6. Patrice Marcotte & Sang Nguyen & Alexandre Schoeb, 2004. "A Strategic Flow Model of Traffic Assignment in Static Capacitated Networks," Operations Research, INFORMS, vol. 52(2), pages 191-212, April.
    7. Boyles, Stephen D. & Tang, Shoupeng & Unnikrishnan, Avinash, 2015. "Parking search equilibrium on a network," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 390-409.
    8. Rambha, Tarun & Boyles, Stephen D. & Unnikrishnan, Avinash & Stone, Peter, 2018. "Marginal cost pricing for system optimal traffic assignment with recourse under supply-side uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 104-121.
    9. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    10. Akamatsu, Takashi, 1996. "Cyclic flows, Markov process and stochastic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 369-386, October.
    11. Dial, Robert B., 2006. "A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 917-936, December.
    12. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    13. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    14. Jacques Guélat & Michael Florian & Teodor Gabriel Crainic, 1990. "A Multimode Multiproduct Network Assignment Model for Strategic Planning of Freight Flows," Transportation Science, INFORMS, vol. 24(1), pages 25-39, February.
    15. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    2. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    3. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    4. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    5. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    6. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    7. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    8. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    9. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    10. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    11. Hamdouch, Younes & Lawphongpanich, Siriphong, 2008. "Schedule-based transit assignment model with travel strategies and capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 663-684, August.
    12. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    13. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    14. S. Waller & David Fajardo & Melissa Duell & Vinayak Dixit, 2013. "Linear Programming Formulation for Strategic Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(4), pages 427-443, December.
    15. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    16. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    17. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    18. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    19. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    20. Yasushi Masuda & Akira Tsuji, 2019. "Congestion Control for a System with Parallel Stations and Homogeneous Customers Using Priority Passes," Networks and Spatial Economics, Springer, vol. 19(1), pages 293-318, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:574-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.