IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v15y2015i3p485-506.html
   My bibliography  Save this article

Day-to-day Dynamics & Equilibrium Stability in A Two-Mode Transport System with Responsive bus Operator Strategies

Author

Listed:
  • Giulio Cantarella
  • Pietro Velonà
  • David Watling

Abstract

This paper presents a day-to-day dynamic analysis of mode choice behaviour in a transportation system. Presented results, regarding a simple two-mode system, support the conjecture that multiple equilibria can likely be observed in such systems. This condition may have a great impact on the design of transit operator strategies. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Giulio Cantarella & Pietro Velonà & David Watling, 2015. "Day-to-day Dynamics & Equilibrium Stability in A Two-Mode Transport System with Responsive bus Operator Strategies," Networks and Spatial Economics, Springer, vol. 15(3), pages 485-506, September.
  • Handle: RePEc:kap:netspa:v:15:y:2015:i:3:p:485-506
    DOI: 10.1007/s11067-013-9188-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-013-9188-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-013-9188-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    2. Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
    3. Watling, David, 1996. "Asymmetric problems and stochastic process models of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 339-357, October.
    4. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
    5. Mark D. Hickman & David H. Bernstein, 1997. "Transit Service and Path Choice Models in Stochastic and Time-Dependent Networks," Transportation Science, INFORMS, vol. 31(2), pages 129-146, May.
    6. Morlok, Edward K., 1979. "Short run supply functions with decreasing user costs," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 183-187, September.
    7. Friesz, Terry L. & Shah, Samir, 2001. "An overview of nontraditional formulations of static and dynamic equilibrium network design," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 5-21, January.
    8. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    9. Smith, M. J., 1979. "Traffic control and route-choice; a simple example," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 289-294, December.
    10. Fitsum Teklu, 2008. "A Stochastic Process Approach for Frequency-based Transit Assignment with Strict Capacity Constraints," Networks and Spatial Economics, Springer, vol. 8(2), pages 225-240, September.
    11. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
    2. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    3. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    4. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    5. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    6. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    7. Djavadian, Shadi & Chow, Joseph Y.J., 2017. "An agent-based day-to-day adjustment process for modeling ‘Mobility as a Service’ with a two-sided flexible transport market," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 36-57.
    8. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    9. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    10. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
    2. Minyu Shen & Feng Xiao & Weihua Gu & Hongbo Ye, 2024. "Cognitive Hierarchy in Day-to-day Network Flow Dynamics," Papers 2409.11908, arXiv.org.
    3. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    4. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    5. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    6. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
    7. Mohamed Wahba & Amer Shalaby, 2014. "Learning-based framework for transit assignment modeling under information provision," Transportation, Springer, vol. 41(2), pages 397-417, March.
    8. Huijun Sun & Si Zhang & Linghui Han & Xiaomei Zhao & Lu Lou, 2020. "Day-to-Day Evolution Model Based on Dynamic Reference Point with Heterogeneous Travelers," Networks and Spatial Economics, Springer, vol. 20(4), pages 935-961, December.
    9. Watling, David, 1998. "Perturbation stability of the asymmetric stochastic equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 155-171, April.
    10. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
    11. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    12. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Roger B. Chen & Christopher Valant, 2023. "Stability and Convergence in Matching Processes for Shared Mobility Systems," Networks and Spatial Economics, Springer, vol. 23(2), pages 469-486, June.
    14. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    15. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
    16. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    17. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    18. Wei, Fangfang & Jia, Ning & Ma, Shoufeng, 2016. "Day-to-day traffic dynamics considering social interaction: From individual route choice behavior to a network flow model," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 335-354.
    19. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    20. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:15:y:2015:i:3:p:485-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.