IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v38y2013i2p93-115.html
   My bibliography  Save this article

The role of proximity in university-business cooperation for innovation

Author

Listed:
  • Nola Hewitt-Dundas

Abstract

The potential for universities to contribute positively to business innovation has received much attention in recent years. While the determinants of university-business cooperation have been examined extensively, less attention has been given to the mediating influence of proximity in this relationship. The analysis in this paper builds on the UK business innovation survey (2002–2005) by incorporating measures of the university research environment for each of the 16,500 businesses surveyed. These measures allow us to look beyond business-level characteristics as determinants of the geography of university cooperation and account for the character of the local university environment. Measures include the distance from each business to its nearest university, the quality of local university research and the density of the university research environment. The findings suggest that significant differences exist between those businesses that cooperate with local universities and those that cooperate with non-local universities. These differences relate to business size, sales profile, location, absorptive capacity and innovation activity. In addition, we also find that if a business is located close to a research excellent university, cooperation tends to remain local, however, the distance between businesses and the nearest university is not a significant determinant of university-business cooperation and further, the higher the concentration of universities in the business locale, the more likely businesses are to cooperate with non-local universities. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Nola Hewitt-Dundas, 2013. "The role of proximity in university-business cooperation for innovation," The Journal of Technology Transfer, Springer, vol. 38(2), pages 93-115, April.
  • Handle: RePEc:kap:jtecht:v:38:y:2013:i:2:p:93-115
    DOI: 10.1007/s10961-011-9229-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10961-011-9229-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-011-9229-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain M. Cockburn & Rebecca M. Henderson, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    2. Pianta, Mario, 1995. "Technology and Growth in OECD Countries, 1970-1990," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 19(1), pages 175-187, February.
    3. Mansfield, Edwin, 1998. "Academic research and industrial innovation: An update of empirical findings1," Research Policy, Elsevier, vol. 26(7-8), pages 773-776, April.
    4. Zoltan J. Acs & David B. Audretsch & Maryann P. Feldman, 2008. "R&D Spillovers and Recipient Firm Size," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 8, pages 88-94, Edward Elgar Publishing.
    5. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    6. Spyros Arvanitis & Nora Sydow & Martin Woerter, 2005. "Is There Any Impact of University-Industry Knowledge Transfer on the Performance of Private Enterprises? - An Empirical Analysis Based on Swiss Firm Data," KOF Working papers 05-117, KOF Swiss Economic Institute, ETH Zurich.
    7. Beise, Marian & Stahl, Harald, 1999. "Public research and industrial innovations in Germany," Research Policy, Elsevier, vol. 28(4), pages 397-422, April.
    8. Branstetter, Lee G., 2001. "Are knowledge spillovers international or intranational in scope?: Microeconometric evidence from the U.S. and Japan," Journal of International Economics, Elsevier, vol. 53(1), pages 53-79, February.
    9. Audretsch, David B & Feldman, Maryann P, 1996. "R&D Spillovers and the Geography of Innovation and Production," American Economic Review, American Economic Association, vol. 86(3), pages 630-640, June.
    10. Audretsch, David B. & Lehmann, Erik E. & Warning, Susanne, 2005. "University spillovers and new firm location," Research Policy, Elsevier, vol. 34(7), pages 1113-1122, September.
    11. Luc Anselin & Attila Varga & Zoltan Acs, 2008. "Local Geographic Spillovers Between University Research and High Technology Innovations," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 9, pages 95-121, Edward Elgar Publishing.
    12. Gambardella, Alfonso, 1992. "Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s," Research Policy, Elsevier, vol. 21(5), pages 391-407, October.
    13. Autant-Bernard, Corinne, 2001. "Science and knowledge flows: evidence from the French case," Research Policy, Elsevier, vol. 30(7), pages 1069-1078, August.
    14. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    15. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    16. Zoltan J. Acs & David B. Audretsch & Maryann P. Feldman, 2008. "Real Effects of Academic Research: Comment," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 7, pages 83-87, Edward Elgar Publishing.
    17. Iansiti, Marco, 1997. "From technological potential to product performance: an empirical analysis," Research Policy, Elsevier, vol. 26(3), pages 345-365, October.
    18. Godin, Benoit & Gingras, Yves, 2000. "The place of universities in the system of knowledge production," Research Policy, Elsevier, vol. 29(2), pages 273-278, February.
    19. repec:bla:jindec:v:46:y:1998:i:2:p:157-82 is not listed on IDEAS
    20. Rod Coombs & Mark Harvey & Bruce S. Tether, 2003. "Analysing distributed processes of provision and innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(6), pages 1125-1155, December.
    21. Laura Abramovsky & Helen Simpson, 2011. "Geographic proximity and firm--university innovation linkages: evidence from Great Britain," Journal of Economic Geography, Oxford University Press, vol. 11(6), pages 949-977, November.
    22. Zoltan J. Acs & Lawrence A. Plummer, 2008. "Penetrating the "Knowledge Filter" in Regional Economies," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 26, pages 370-388, Edward Elgar Publishing.
    23. Anthony Arundel & Aldo Geuna, 2004. "Proximity and the use of public science by innovative European firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 559-580.
    24. Najib Harabi, 1998. "Innovation Through Vertical Relations Between Firms, Suppliers And Customers: A Study Of German Firms," Industry and Innovation, Taylor & Francis Journals, vol. 5(2), pages 157-179.
    25. Zucker, Lynne G & Darby, Michael R & Armstrong, Jeff, 1998. "Geographically Localized Knowledge: Spillovers or Markets?," Economic Inquiry, Western Economic Association International, vol. 36(1), pages 65-86, January.
    26. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    27. Andre Torre & Alain Rallet, 2005. "Proximity and Localization," Regional Studies, Taylor & Francis Journals, vol. 39(1), pages 47-59.
    28. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    29. Helen Lawton Smith & Sharmistha Bagchi-Sen, 2006. "University-Industry Interactions: the Case of the UK Biotech Industry," Industry and Innovation, Taylor & Francis Journals, vol. 13(4), pages 371-392.
    30. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    31. Rinaldo Evangelista, 2000. "Sectoral Patterns Of Technological Change In Services," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 9(3), pages 183-222.
    32. Monjon, Stephanie & Waelbroeck, Patrick, 2003. "Assessing spillovers from universities to firms: evidence from French firm-level data," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1255-1270, November.
    33. Blind, Knut & Grupp, Hariolf, 1999. "Interdependencies between the science and technology infrastructure and innovation activities in German regions: empirical findings and policy consequences," Research Policy, Elsevier, vol. 28(5), pages 451-468, June.
    34. Roderik Ponds, 2009. "The limits to internationalization of scientific research collaboration," The Journal of Technology Transfer, Springer, vol. 34(1), pages 76-94, February.
    35. Ina Drejer & Anker Lund Vinding, 2007. "Searching Near and Far: Determinants of Innovative Firms' Propensity to Collaborate Across Geographical Distance," Industry and Innovation, Taylor & Francis Journals, vol. 14(3), pages 259-275.
    36. Janet Bercovitz & Maryann Feldman, 2006. "Entpreprenerial Universities and Technology Transfer: A Conceptual Framework for Understanding Knowledge-Based Economic Development," The Journal of Technology Transfer, Springer, vol. 31(1), pages 175-188, January.
    37. Bruce Tether, 2005. "Do Services Innovate (Differently)? Insights from the European Innobarometer Survey," Industry and Innovation, Taylor & Francis Journals, vol. 12(2), pages 153-184.
    38. Rudi Bekkers & Bodas Freitas, 2008. "Analysing preferences for knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Grenoble Ecole de Management (Post-Print) hal-01487467, HAL.
    39. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    40. Kaufmann, Alexander & Todtling, Franz, 2001. "Science-industry interaction in the process of innovation: the importance of boundary-crossing between systems," Research Policy, Elsevier, vol. 30(5), pages 791-804, May.
    41. repec:dau:papers:123456789/13785 is not listed on IDEAS
    42. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    43. Cristiano Antonelli, 2008. "The new economics of the university: a knowledge governance approach," The Journal of Technology Transfer, Springer, vol. 33(1), pages 1-22, February.
    44. Almeida, Paul & Kogut, Bruce, 1997. "The Exploration of Technological Diversity and the Geographic Localization of Innovation," Small Business Economics, Springer, vol. 9(1), pages 21-31, February.
    45. von Hippel, Eric, 1987. "Cooperation between rivals: Informal know-how trading," Research Policy, Elsevier, vol. 16(6), pages 291-302, December.
    46. Lockett, Andy & Wright, Mike, 2005. "Resources, capabilities, risk capital and the creation of university spin-out companies," Research Policy, Elsevier, vol. 34(7), pages 1043-1057, September.
    47. Iain M. Cockburn & Rebecca M. Henderson, 2001. "Publicly Funded Science and the Productivity of the Pharmaceutical Industry," NBER Chapters, in: Innovation Policy and the Economy, Volume 1, pages 1-34, National Bureau of Economic Research, Inc.
    48. Ron Boschma, 2005. "Proximity and Innovation: A Critical Assessment," Regional Studies, Taylor & Francis Journals, vol. 39(1), pages 61-74.
    49. Perkmann, Markus & Walsh, Kathryn, 2008. "Engaging the scholar: Three types of academic consulting and their impact on universities and industry," Research Policy, Elsevier, vol. 37(10), pages 1884-1891, December.
    50. Mansfield, Edwin & Lee, Jeong-Yeon, 1996. "The modern university: contributor to industrial innovation and recipient of industrial R&D support," Research Policy, Elsevier, vol. 25(7), pages 1047-1058, October.
    51. Wolfgang Becker, 2003. "Evaluation of the Role of Universities in the Innovation Process," Discussion Paper Series 241, Universitaet Augsburg, Institute for Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hewitt-Dundas, Nola, 2012. "Research intensity and knowledge transfer activity in UK universities," Research Policy, Elsevier, vol. 41(2), pages 262-275.
    2. Maietta, Ornella Wanda, 2015. "Determinants of university–firm R&D collaboration and its impact on innovation: A perspective from a low-tech industry," Research Policy, Elsevier, vol. 44(7), pages 1341-1359.
    3. Manuel Acosta & Joaqu�n M. Azagra-Caro & Daniel Coronado, 2016. "Access to Universities' Public Knowledge: Who is More Regionalist?," Regional Studies, Taylor & Francis Journals, vol. 50(3), pages 446-459, March.
    4. Nobuya Fukugawa, 2013. "University spillovers into small technology-based firms: channel, mechanism, and geography," The Journal of Technology Transfer, Springer, vol. 38(4), pages 415-431, August.
    5. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    6. Toole, Andrew A., 2012. "The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 41(1), pages 1-12.
    7. Toole, Andrew A., 2011. "The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry," ZEW Discussion Papers 11-063, ZEW - Leibniz Centre for European Economic Research.
    8. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    9. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    10. Alessandra Colombelli & Antonio De Marco & Emilio Paolucci & Riccardo Ricci & Giuseppe Scellato, 2021. "University technology transfer and the evolution of regional specialization: the case of Turin," The Journal of Technology Transfer, Springer, vol. 46(4), pages 933-960, August.
    11. Bart Leten & Paolo Landoni & Bart Van Looy, 2011. "Developing Technology in the Vicinity of Science: Do Firms Benefit? An Overview and Empirical Assessment on the Level of Italian Provinces," Chapters, in: Massimo G. Colombo & Luca Grilli & Lucia Piscitello & Cristina Rossi-Lamastra (ed.), Science and Innovation Policy for the New Knowledge Economy, chapter 5, Edward Elgar Publishing.
    12. Federico Caviggioli & Alessandra Colombelli & Antonio De Marco & Giuseppe Scellato & Elisa Ughetto, 2023. "Co-evolution patterns of university patenting and technological specialization in European regions," The Journal of Technology Transfer, Springer, vol. 48(1), pages 216-239, February.
    13. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    14. Broström, Anders, 2010. "Working with distant researchers--Distance and content in university-industry interaction," Research Policy, Elsevier, vol. 39(10), pages 1311-1320, December.
    15. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    16. Victoria Galan-Muros & Todd Davey, 2019. "The UBC ecosystem: putting together a comprehensive framework for university-business cooperation," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1311-1346, August.
    17. A. Bellucci & L. Pennacchio, 2016. "University knowledge and firm innovation: evidence from European countries," The Journal of Technology Transfer, Springer, vol. 41(4), pages 730-752, August.
    18. Hong, Wei & Su, Yu-Sung, 2013. "The effect of institutional proximity in non-local university–industry collaborations: An analysis based on Chinese patent data," Research Policy, Elsevier, vol. 42(2), pages 454-464.
    19. Yongli Tang & Kazuyuki Motohashi & Xinyue Hu & Angeles Montoro-Sanchez, 2020. "University-industry interaction and product innovation performance of Guangdong manufacturing firms: the roles of regional proximity and research quality of universities," The Journal of Technology Transfer, Springer, vol. 45(2), pages 578-618, April.
    20. Nobuya Fukugawa, 2011. "Impacts and channels of university spillovers before the national innovation system reform in Japan," International Journal of Transitions and Innovation Systems, Inderscience Enterprises Ltd, vol. 1(4), pages 383-393.

    More about this item

    Keywords

    University-business; Cooperation; Innovation; Proximity; Knowledge sourcing; O31; O32; O33; O19;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O19 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - International Linkages to Development; Role of International Organizations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:38:y:2013:i:2:p:93-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.