IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v16y2001i1p63-78.html
   My bibliography  Save this article

A Computational Framework for Accelerating DEA

Author

Listed:
  • J.H. Dulá
  • R.M. Thrall

Abstract

We introducea new computational framework for DEA that reduces computationtimes and increases flexibility in applications over multiplemodels and orientations.The process is based on the identificationof frames--minimal subsets of the data needed to describethe models in the problems--for each of the four standardproduction possibility sets. It exploits the fact that the framesof the models are closely interrelated. Access to a frame ofa production possibility set permits a complete analysis in asecond phase for the corresponding model either oriented or orientation-free.This second phase proceeds quickly especially if the frame isa small subset of the data points. Besides accelerating computations,the new framework imparts greater flexibility to the analysisby not committing the analyst to a model or orientation whenperforming the bulk of the calculations. Computational testingvalidates the results and reveals that, with a minimum additionaltime over what is required for a full DEA study for a given modeland specified orientation, one can obtain the analysis for thefour models and all orientations. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • J.H. Dulá & R.M. Thrall, 2001. "A Computational Framework for Accelerating DEA," Journal of Productivity Analysis, Springer, vol. 16(1), pages 63-78, July.
  • Handle: RePEc:kap:jproda:v:16:y:2001:i:1:p:63-78
    DOI: 10.1023/A:1011103303616
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1011103303616
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1011103303616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Thrall, 2000. "Measures in DEA with an Application to the Malmquist Index," Journal of Productivity Analysis, Springer, vol. 13(2), pages 125-137, March.
    2. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    3. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    5. Richard Barr & Matthew Durchholz, 1997. "Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models," Annals of Operations Research, Springer, vol. 73(0), pages 339-372, October.
    6. Dula, J. H. & Helgason, R. V., 1996. "A new procedure for identifying the frame of the convex hull of a finite collection of points in multidimensional space," European Journal of Operational Research, Elsevier, vol. 92(2), pages 352-367, July.
    7. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    2. F J López & J H Dulá, 2008. "Adding and removing an attribute in a DEA model: theory and processing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1674-1684, December.
    3. Peyrache, Antonio, 2024. "A homothetic data generated technology," European Journal of Operational Research, Elsevier, vol. 316(1), pages 255-267.
    4. Meng Zhang & Jin-chuan Cui, 2016. "The extension and integration of the inverse DEA method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1212-1220, September.
    5. Wen-Chih Chen & Sheng-Yung Lai, 2017. "Determining radial efficiency with a large data set by solving small-size linear programs," Annals of Operations Research, Springer, vol. 250(1), pages 147-166, March.
    6. Dulá, J.H. & López, F.J., 2013. "DEA with streaming data," Omega, Elsevier, vol. 41(1), pages 41-47.
    7. Alexander P. Afanasiev & Vladimir E. Krivonozhko & Andrey V. Lychev & Oleg V. Sukhoroslov, 2020. "Multidimensional frontier visualization based on optimization methods using parallel computations," Journal of Global Optimization, Springer, vol. 76(3), pages 563-574, March.
    8. J. H. Dulá, 2011. "An Algorithm for Data Envelopment Analysis," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 284-296, May.
    9. Tao Jie, 2020. "Parallel processing of the Build Hull algorithm to address the large-scale DEA problem," Annals of Operations Research, Springer, vol. 295(1), pages 453-481, December.
    10. José H. Dulá & Francisco J. López, 2006. "Algorithms for the Frame of a Finitely Generated Unbounded Polyhedron," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 97-110, February.
    11. Emrouznejad, Ali & De Witte, Kristof, 2010. "COOPER-framework: A unified process for non-parametric projects," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1573-1586, December.
    12. Antonio Peyrache, 2024. "Homothetic Data Generated Production Metatechnologies," CEPA Working Papers Series WP022024, School of Economics, University of Queensland, Australia.
    13. Bougnol, M.-L. & Dulá, J.H., 2009. "Anchor points in DEA," European Journal of Operational Research, Elsevier, vol. 192(2), pages 668-676, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    2. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    3. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. María Victoria Uribe‐Bohorquez & Jennifer Martínez‐Ferrero & Isabel‐María García‐Sánchez, 2019. "Women on boards and efficiency in a business‐orientated environment," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(1), pages 82-96, January.
    5. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    6. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    7. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    8. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    9. Ali, Agha Iqbal & Lerme, Catherine S. & Seiford, Lawrence M., 1995. "Components of efficiency evaluation in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 80(3), pages 462-473, February.
    10. Lovell, C. A. Knox & Pastor, Jesus T., 1999. "Radial DEA models without inputs or without outputs," European Journal of Operational Research, Elsevier, vol. 118(1), pages 46-51, October.
    11. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    12. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    13. Kalaba, Robert & Tesfatsion, Leigh, 1996. "A multicriteria approach to model specification and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 193-214, February.
    14. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    15. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    16. Shengqing Chang & Jingjing Ding & Chenpeng Feng & Ruifeng Wang, 2024. "A Hybrid Parallel Processing Strategy for Large-Scale DEA Computation," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2325-2349, June.
    17. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    18. Khezrimotlagh, Dariush & Cook, Wade D. & Zhu, Joe, 2020. "A nonparametric framework to detect outliers in estimating production frontiers," European Journal of Operational Research, Elsevier, vol. 286(1), pages 375-388.
    19. Carlos Pestana Barros & Maria Teresa Medeiros Garcia, 2006. "Performance Evaluation of Pension Funds Management Companies with Data Envelopment Analysis," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 9(2), pages 165-188, September.
    20. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:16:y:2001:i:1:p:63-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.