IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v73y1997i0p339-37210.1023-a1018941531019.html
   My bibliography  Save this article

Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models

Author

Listed:
  • Richard Barr
  • Matthew Durchholz

Abstract

Accompanying the increasing popularity of DEA are computationally challenging applications: large-scale problems involving the solution of thousands of linear programs. This paper describes a new problem decomposition procedure which dramatically expedites the solution of these computationally intense problems and fully exploits parallel processing environments. Testing of a new DEA code based on this approach is reported for a wide range of problems, including the largest reported to date: an 8,700-LP banking-industry application. Copyright Kluwer Academic Publishers 1997

Suggested Citation

  • Richard Barr & Matthew Durchholz, 1997. "Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models," Annals of Operations Research, Springer, vol. 73(0), pages 339-372, October.
  • Handle: RePEc:spr:annopr:v:73:y:1997:i:0:p:339-372:10.1023/a:1018941531019
    DOI: 10.1023/A:1018941531019
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018941531019
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018941531019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.
    2. Tao Jie, 2020. "Parallel processing of the Build Hull algorithm to address the large-scale DEA problem," Annals of Operations Research, Springer, vol. 295(1), pages 453-481, December.
    3. López, Francisco J., 2011. "Generalizing cross redundancy in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 214(3), pages 716-721, November.
    4. J.H. Dulá & R.M. Thrall, 2001. "A Computational Framework for Accelerating DEA," Journal of Productivity Analysis, Springer, vol. 16(1), pages 63-78, July.
    5. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    6. Wen-Chih Chen & Sheng-Yung Lai, 2017. "Determining radial efficiency with a large data set by solving small-size linear programs," Annals of Operations Research, Springer, vol. 250(1), pages 147-166, March.
    7. J. H. Dulá, 2011. "An Algorithm for Data Envelopment Analysis," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 284-296, May.
    8. Chu, Junfei & Rui, Yuting & Khezrimotlagh, Dariush & Zhu, Joe, 2024. "A general computational framework and a hybrid algorithm for large-scale data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 316(2), pages 639-650.
    9. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    10. Alexander P. Afanasiev & Vladimir E. Krivonozhko & Andrey V. Lychev & Oleg V. Sukhoroslov, 2020. "Multidimensional frontier visualization based on optimization methods using parallel computations," Journal of Global Optimization, Springer, vol. 76(3), pages 563-574, March.
    11. Shengqing Chang & Jingjing Ding & Chenpeng Feng & Ruifeng Wang, 2024. "A Hybrid Parallel Processing Strategy for Large-Scale DEA Computation," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2325-2349, June.
    12. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    13. Khezrimotlagh, Dariush & Cook, Wade D. & Zhu, Joe, 2020. "A nonparametric framework to detect outliers in estimating production frontiers," European Journal of Operational Research, Elsevier, vol. 286(1), pages 375-388.
    14. Pendharkar, Parag C., 2015. "Cost minimizing target setting heuristics for making inefficient decision-making units efficient," International Journal of Production Economics, Elsevier, vol. 162(C), pages 1-12.
    15. Dulá, J.H. & López, F.J., 2013. "DEA with streaming data," Omega, Elsevier, vol. 41(1), pages 41-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:73:y:1997:i:0:p:339-372:10.1023/a:1018941531019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.