IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i1p375-388.html
   My bibliography  Save this article

A nonparametric framework to detect outliers in estimating production frontiers

Author

Listed:
  • Khezrimotlagh, Dariush
  • Cook, Wade D.
  • Zhu, Joe

Abstract

In a large number of organizations, there is an ongoing need to evaluate performance. There is also a need to estimate the production frontier of best performers in such environments. Part of the difficulty in constructing this frontier is that massive amounts of data are generated daily with the result being that the set of best performers is constantly changing. Furthermore, measurement errors can influence datasets as well as the estimation of a production frontier. Outliers can also substantially affect the estimated production frontier. Efforts have been made in the past three decades to deal with datasets that might include such outliers; these methods are mostly semiautomatic or require significant computation time when a large dataset is involved. The few existing research on large datasets also focuses on the computational process of measuring a production frontier without identifying the possible influence of outliers to the estimated frontier. In the current paper, for the first time in the literature of data envelopment analysis (DEA), we develop an automatic framework with the computational capability and accuracy needed when big datasets (with multiple inputs and multiple outputs) are considered. Several examples, simulation experiments, and real-life applications are discussed to demonstrate the power of the proposed framework. A data analysis with illustrative graphs is provided to clearly show the methodology. In terms of estimating the production frontier, the method is robust, user-friendly, and substantially decreases the requirement of user judgment while at the same time allowing for the incorporation of such judgement.

Suggested Citation

  • Khezrimotlagh, Dariush & Cook, Wade D. & Zhu, Joe, 2020. "A nonparametric framework to detect outliers in estimating production frontiers," European Journal of Operational Research, Elsevier, vol. 286(1), pages 375-388.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:375-388
    DOI: 10.1016/j.ejor.2020.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    2. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    3. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    4. Rajiv D. Banker & Hsihui Chang & Zhiqiang Zheng, 2017. "On the use of super-efficiency procedures for ranking efficient units and identifying outliers," Annals of Operations Research, Springer, vol. 250(1), pages 21-35, March.
    5. WILSON, Paul & SIMAR, Leopold, 1995. "Bootstrap Estimation for Nonparametric Efficiency Estimates," LIDAM Discussion Papers CORE 1995071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Johnson, Andrew L. & McGinnis, Leon F., 2008. "Outlier detection in two-stage semiparametric DEA models," European Journal of Operational Research, Elsevier, vol. 187(2), pages 629-635, June.
    7. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    8. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    9. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    10. Dusansky, Richard & Wilson, Paul W., 1995. "On the relative efficiency of alternative modes of producing a public sector output: The case of the developmentally disabled," European Journal of Operational Research, Elsevier, vol. 80(3), pages 608-618, February.
    11. Kevin Fox & Robert Hill & W. Diewert, 2004. "Identifying Outliers in Multi-Output Models," Journal of Productivity Analysis, Springer, vol. 22(1), pages 73-94, July.
    12. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    13. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    15. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    16. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    17. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    18. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-794, July-Aug..
    21. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    22. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    23. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    24. J Ondrich & J Ruggiero, 2002. "Outlier detection in data envelopment analysis: an analysis of jackknifing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(3), pages 342-346, March.
    25. Richard Barr & Matthew Durchholz, 1997. "Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models," Annals of Operations Research, Springer, vol. 73(0), pages 339-372, October.
    26. Bill L. Seaver & Konstantinos P. Triantis, 1995. "The Impact of Outliers and Leverage Points for Technical Efficiency Measurement Using High Breakdown Procedures," Management Science, INFORMS, vol. 41(6), pages 937-956, June.
    27. Wen-Chih Chen & Sheng-Yung Lai, 2017. "Determining radial efficiency with a large data set by solving small-size linear programs," Annals of Operations Research, Springer, vol. 250(1), pages 147-166, March.
    28. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    29. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    2. Andreas Dellnitz & Madjid Tavana & Rajiv Banker, 2023. "A novel median-based optimization model for eco-efficiency assessment in data envelopment analysis," Annals of Operations Research, Springer, vol. 322(2), pages 661-690, March.
    3. Minh-Hieu Le & Wen-Min Lu & Qian Long Kweh, 2023. "The moderating effects of power distance on corporate social responsibility and multinational enterprises performance," Review of Managerial Science, Springer, vol. 17(7), pages 2503-2533, October.
    4. Xiuquan Huang & Tao Zhang & Xi Wang & Jiansong Zheng & Guoli Xu & Xiaoshan Wu, 2024. "Regional differences of agricultural total factor carbon efficiency in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    5. Jradi, Samah & Parmeter, Christopher F. & Ruggiero, John, 2021. "Quantile estimation of stochastic frontiers with the normal-exponential specification," European Journal of Operational Research, Elsevier, vol. 295(2), pages 475-483.
    6. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.
    2. Pastor, Jesus T. & Ruiz, Jose L. & Sirvent, Inmaculada, 1999. "A statistical test for detecting influential observations in DEA," European Journal of Operational Research, Elsevier, vol. 115(3), pages 542-554, June.
    3. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    4. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    5. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    6. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    7. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    8. Marcel Clermont & Julia Schaefer, 2019. "Identification of Outliers in Data Envelopment Analysis," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(4), pages 475-496, October.
    9. Bernardino Benito & José Solana & María-Rocío Moreno, 2014. "Explaining efficiency in municipal services providers," Journal of Productivity Analysis, Springer, vol. 42(3), pages 225-239, December.
    10. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    11. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    12. Agrell, Per J. & Niknazar, Pooria, 2014. "Structural and behavioral robustness in applied best-practice regulation," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 89-103.
    13. Ruiz, Jose L. & Sirvent, Inmaculada, 2001. "Techniques for the assessment of influence in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 390-399, July.
    14. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    15. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    16. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    17. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    18. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    19. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
    20. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:375-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.