IDEAS home Printed from https://ideas.repec.org/a/kap/jbuset/v168y2021i3d10.1007_s10551-019-04239-z.html
   My bibliography  Save this article

The General Data Protection Regulation in the Age of Surveillance Capitalism

Author

Listed:
  • Jane Andrew

    (The University of Sydney Business School)

  • Max Baker

    (The University of Sydney Business School)

Abstract

Clicks, comments, transactions, and physical movements are being increasingly recorded and analyzed by Big Data processors who use this information to trace the sentiment and activities of markets and voters. While the benefits of Big Data have received considerable attention, it is the potential social costs of practices associated with Big Data that are of interest to us in this paper. Prior research has investigated the impact of Big Data on individual privacy rights, however, there is also growing recognition of its capacity to be mobilized for surveillance purposes. Our paper delineates the underlying issues of privacy and surveillance and presents them as in tension with one another. We postulate that efforts at controlling Big Data may create a trade-off of risks rather than an overall improvement in data protection. We explore this idea in relation to the principles of the European Union’s General Data Protection Regulation (GDPR) as it arguably embodies the new ‘gold standard’ of cyber-laws. We posit that safeguards advocated by the law, anonymization and pseudonymization, while representing effective counter measures to privacy concerns, also incentivize the use, collection, and trade of behavioral and other forms of de-identified data. We consider the legal status of these ownerless forms of data, arguing that data protection techniques such as anonymization and pseudonymization raise significant concerns over the ownership of behavioral data and its potential use in the large-scale modification of activities and choices made both on and offline.

Suggested Citation

  • Jane Andrew & Max Baker, 2021. "The General Data Protection Regulation in the Age of Surveillance Capitalism," Journal of Business Ethics, Springer, vol. 168(3), pages 565-578, January.
  • Handle: RePEc:kap:jbuset:v:168:y:2021:i:3:d:10.1007_s10551-019-04239-z
    DOI: 10.1007/s10551-019-04239-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10551-019-04239-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10551-019-04239-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward L. Glaeser & Andrew Hillis & Scott Duke Kominers & Michael Luca, 2016. "Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy," American Economic Review, American Economic Association, vol. 106(5), pages 114-118, May.
    2. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    3. David Newkirk, 2018. "“Apple: Good Business, Poor Citizen”: A Practitioner’s Response," Journal of Business Ethics, Springer, vol. 151(1), pages 13-16, August.
    4. Kirsten Martin, 2016. "Do Privacy Notices Matter? Comparing the Impact of Violating Formal Privacy Notices and Informal Privacy Norms on Consumer Trust Online," The Journal of Legal Studies, University of Chicago Press, vol. 45(S2), pages 191-215.
    5. Glen Whelan, 2019. "Trust in Surveillance: A Reply to Etzioni," Journal of Business Ethics, Springer, vol. 156(1), pages 15-19, April.
    6. Kirsten Martin, 2019. "Trust and the Online Market Maker: A Comment on Etzioni’s Cyber Trust," Journal of Business Ethics, Springer, vol. 156(1), pages 21-24, April.
    7. Amitai Etzioni, 2018. "Apple: Good Business, Poor Citizen?," Journal of Business Ethics, Springer, vol. 151(1), pages 1-11, August.
    8. Kirsten Martin, 2016. "Understanding Privacy Online: Development of a Social Contract Approach to Privacy," Journal of Business Ethics, Springer, vol. 137(3), pages 551-569, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
    2. Jeffrey Benjamin Meyers, 2021. "Toward a Post-Apocalyptic Rule of Law," Laws, MDPI, vol. 10(3), pages 1-28, August.
    3. Bag, Surajit & Rahman, Muhammad Sabbir & Srivastava, Gautam & Shore, Adam & Ram, Pratibha, 2023. "Examining the role of virtue ethics and big data in enhancing viable, sustainable, and digital supply chain performance," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    5. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2023. "Exploring the killer domains to create new value: A Comparative case study of Canadian and Korean telcos," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277998, International Telecommunications Society (ITS).
    6. Gary Burkhardt & Frederic Boy & Daniele Doneddu & Nick Hajli, 2023. "Privacy Behaviour: A Model for Online Informed Consent," Journal of Business Ethics, Springer, vol. 186(1), pages 237-255, August.
    7. Brian Baldassarre & Giulia Calabretta & Ingo Oswald Karpen & Nancy Bocken & Erik Jan Hultink, 2024. "Responsible Design Thinking for Sustainable Development: Critical Literature Review, New Conceptual Framework, and Research Agenda," Journal of Business Ethics, Springer, vol. 195(1), pages 25-46, November.
    8. Shmueli, Galit & Tafti, Ali, 2023. "How to “improve” prediction using behavior modification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 541-555.
    9. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2024. "Exploring killer domains to create new value: A comparative case study of Canadian and Korean telcos," Telecommunications Policy, Elsevier, vol. 48(4).
    10. Lassila, Erkki M., 2022. "“Free”-to-play game: Governing the everyday life of digital popular culture," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 87(C).
    11. Emer Owens & Barry Sheehan & Martin Mullins & Martin Cunneen & Juliane Ressel & German Castignani, 2022. "Explainable Artificial Intelligence (XAI) in Insurance," Risks, MDPI, vol. 10(12), pages 1-50, December.
    12. Alharthi, Amal & Cortese, Corinne & Moerman, Lee & Tanima, Farzana, 2022. "Surveillance capitalism in the middle east retail sector," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    2. Michael Etter & Christian Fieseler & Glen Whelan, 2019. "Sharing Economy, Sharing Responsibility? Corporate Social Responsibility in the Digital Age," Journal of Business Ethics, Springer, vol. 159(4), pages 935-942, November.
    3. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    4. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    5. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    6. Maria R. Ibanez & Michael W. Toffel, 2020. "How Scheduling Can Bias Quality Assessment: Evidence from Food-Safety Inspections," Management Science, INFORMS, vol. 66(6), pages 2396-2416, June.
    7. Grace Fox & Lisa van der Werff & Pierangelo Rosati & Patricia Takako Endo & Theo Lynn, 2022. "Examining the determinants of acceptance and use of mobile contact tracing applications in Brazil: An extended privacy calculus perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 944-967, July.
    8. Hayakawa, Kazunobu & Keola, Souknilanh & Urata, Shujiro, 2022. "How effective was the restaurant restraining order against COVID-19? A nighttime light study in Japan," Japan and the World Economy, Elsevier, vol. 63(C).
    9. Hao Wu & Hongzan Jiao & Yang Yu & Zhigang Li & Zhenghong Peng & Lingbo Liu & Zheng Zeng, 2018. "Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    10. Obschonka, Martin & Lee, Neil & Rodríguez-Pose, Andrés & Eichstaedt, johannes Christopher & Ebert, Tobias, 2018. "Big Data, artificial intelligence and the geography of entrepreneurship in the United States," OSF Preprints c62tn, Center for Open Science.
    11. Werner Liebregts & Pourya Darnihamedani & Eric Postma & Martin Atzmueller, 2020. "The promise of social signal processing for research on decision-making in entrepreneurial contexts," Small Business Economics, Springer, vol. 55(3), pages 589-605, October.
    12. Jinwon Kim & Jucheol Moon, 2022. "Congestion Costs and Scheduling Preferences of Car Commuters in California: Estimates Using Big Data," Working Papers 2201, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    13. Panle Jia Barwick & Yanyan Liu & Eleonora Patacchini & Qi Wu, 2023. "Information, Mobile Communication, and Referral Effects," American Economic Review, American Economic Association, vol. 113(5), pages 1170-1207, May.
    14. Prithwiraj Choudhury & Dan Wang & Natalie A. Carlson & Tarun Khanna, 2019. "Machine learning approaches to facial and text analysis: Discovering CEO oral communication styles," Strategic Management Journal, Wiley Blackwell, vol. 40(11), pages 1705-1732, November.
    15. Remi Jedwab & Prakash Loungani & Anthony Yezer, 2019. "How Should We Measure City Size? Theory and Evidence Within and Across Rich and Poor Countries," Working Papers 2019-11, The George Washington University, Institute for International Economic Policy.
    16. Steven C Bourassa & Martin Hoesli & Louis Merlin & John Renne, 2021. "Big data, accessibility and urban house prices," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3176-3195, November.
    17. Seung Jin Cho & Jun Yeong Lee & John V. Winters, 2021. "Employment impacts of the COVID‐19 pandemic across metropolitan status and size," Growth and Change, Wiley Blackwell, vol. 52(4), pages 1958-1996, December.
    18. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    19. Anjuli Franz & Alexander Benlian, 2022. "Exploring interdependent privacy – Empirical insights into users’ protection of others’ privacy on online platforms," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2293-2309, December.
    20. Christensen, Peter & Osman, Adam, 2021. "The Demand for Mobility: Evidence from an Experiment with Uber Riders," IZA Discussion Papers 14179, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jbuset:v:168:y:2021:i:3:d:10.1007_s10551-019-04239-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.