IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i2p541-555.html
   My bibliography  Save this article

How to “improve” prediction using behavior modification

Author

Listed:
  • Shmueli, Galit
  • Tafti, Ali

Abstract

Many internet platforms that collect behavioral big data use it to predict user behavior for internal purposes and for their business customers (e.g., advertisers, insurers, security forces, governments, political consulting firms) who utilize the predictions for personalization, targeting, and other decision-making. Improving predictive accuracy is therefore extremely valuable. Data science researchers design algorithms, models, and approaches to improve prediction. Prediction is also improved with larger and richer data. Beyond improving algorithms and data, platforms can stealthily achieve better prediction accuracy by pushing users’ behaviors towards their predicted values, using behavior modification techniques, thereby demonstrating more certain predictions. Such apparent “improved” prediction can result from employing reinforcement learning algorithms that combine prediction and behavior modification. This strategy is absent from the machine learning and statistics literature. Investigating its properties requires integrating causal with predictive notation. To this end, we incorporate Pearl’s causal do(.) operator into the predictive vocabulary. We then decompose the expected prediction error given behavior modification and identify the components impacting predictive power. Our derivation elucidates implications of such behavior modification to data scientists, platforms, their customers, and the humans whose behavior is manipulated. Behavior modification can make users’ behavior more predictable and even more homogeneous; yet this apparent predictability might not generalize when business customers use predictions in practice. Outcomes pushed towards their predictions can be at odds with customers’ intentions, and harmful to manipulated users.

Suggested Citation

  • Shmueli, Galit & Tafti, Ali, 2023. "How to “improve” prediction using behavior modification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 541-555.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:541-555
    DOI: 10.1016/j.ijforecast.2022.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022001066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos Fern'andez-Lor'ia & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2020. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Papers 2004.11532, arXiv.org, revised Apr 2022.
    2. Jane Andrew & Max Baker, 2021. "The General Data Protection Regulation in the Age of Surveillance Capitalism," Journal of Business Ethics, Springer, vol. 168(3), pages 565-578, January.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyndman, Rob J., 2023. "Forecasting, causality and feedback," International Journal of Forecasting, Elsevier, vol. 39(2), pages 558-560.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    2. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    3. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    6. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    7. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    8. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    9. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    10. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    11. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    12. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    13. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    14. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    15. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    16. Matilde Cappelletti & Leonardo M. Giuffrida, 2024. "Targeted Bidders in Government Tenders," CESifo Working Paper Series 11142, CESifo.
    17. Art B. Owen & Hal Varian, 2018. "Optimizing the tie-breaker regression discontinuity design," Papers 1808.07563, arXiv.org, revised Jul 2020.
    18. Michela Carlana, 2019. "Implicit Stereotypes: Evidence from Teachers’ Gender Bias," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(3), pages 1163-1224.
    19. Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
    20. Öberg, Stefan, 2018. "Instrumental variables based on twin births are by definition not valid (v.3.0)," SocArXiv zux9s, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:541-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.