IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v66y2017i3d10.1007_s10640-016-0085-4.html
   My bibliography  Save this article

Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions

Author

Listed:
  • Mare Sarr

    (University of Cape Town)

  • Joëlle Noailly

    (Graduate Institute of International and Development Studies)

Abstract

The objective of this article is to provide a succinct review of the main developments in the field of research on the economics of growth, innovation, diffusion and the environment. We focus on the last fifteen to twenty years of scientific advances in the field as this corresponds to: (i) the consensus on the theoretical side on endogenous economic growth modelling, and (ii) the growing empirical work on innovation and diffusion due to the development of patent data. As very good reviews already exist in the literature, we only provide a brief and non-exhaustive discussion aiming at taking stock of some recent developments and charting new issues for a future research agenda.

Suggested Citation

  • Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  • Handle: RePEc:kap:enreec:v:66:y:2017:i:3:d:10.1007_s10640-016-0085-4
    DOI: 10.1007/s10640-016-0085-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-016-0085-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-016-0085-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Adam B. Jaffe & Benjamin F. Jones, 2015. "The Changing Frontier: Rethinking Science and Innovation Policy," NBER Books, National Bureau of Economic Research, Inc, number jaff13-1.
    3. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    4. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    5. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    6. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    7. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    8. Dekker, Thijs & Vollebergh, Herman R.J. & de Vries, Frans P. & Withagen, Cees A., 2012. "Inciting protocols," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 45-67.
    9. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    10. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    11. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy-Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
    12. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    13. repec:fth:harver:1473 is not listed on IDEAS
    14. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    15. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
    16. Grubb, Michael & Chapuis, Thierry & Duong, Minh Ha, 1995. "The economics of changing course : Implications of adaptability and inertia for optimal climate policy," Energy Policy, Elsevier, vol. 23(4-5), pages 417-431.
    17. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    18. Kamien, Morton I & Schwartz, Nancy L, 1975. "Market Structure and Innovation: A Survey," Journal of Economic Literature, American Economic Association, vol. 13(1), pages 1-37, March.
    19. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    20. Antoine Dechezleprêtre & Matthieu Glachant & Yann Ménière, 2013. "What Drives the International Transfer of Climate Change Mitigation Technologies? Empirical Evidence from Patent Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 161-178, February.
    21. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    22. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    23. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    24. David Popp, 2016. "Economic analysis of scientific publications and implications for energy research and development," Nature Energy, Nature, vol. 1(4), pages 1-8, April.
    25. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    26. Herman R. J. Vollebergh & Edwin van der Werf, 2014. "The Role of Standards in Eco-innovation: Lessons for Policymakers," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 230-248.
    27. Jaffe, Adam B. & Jones, Benjamin F. (ed.), 2015. "The Changing Frontier," National Bureau of Economic Research Books, University of Chicago Press, number 9780226286723, September.
    28. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    29. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    30. Ivan Haščič & Jérôme Silva & Nick Johnstone, 2012. "Climate Mitigation and Adaptation in Africa: Evidence from Patent Data," OECD Environment Working Papers 50, OECD Publishing.
    31. Criscuolo, Chiara & Menon, Carlo, 2015. "Environmental policies and risk finance in the green sector: Cross-country evidence," Energy Policy, Elsevier, vol. 83(C), pages 38-56.
    32. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    33. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    34. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    35. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    36. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    37. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    38. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    39. Frederick van der Ploeg, 2016. "Fossil fuel producers under threat," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 32(2), pages 206-222.
    40. Declan Conway & Antoine Dechezleprêtre & Ivan Haščič & Nick Johnstone, 2015. "Invention and Diffusion of Water Supply and Water Efficiency Technologies: Insights from a Global Patent Dataset," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-34, December.
    41. Ufuk Akcigit & William R. Kerr, 2018. "Growth through Heterogeneous Innovations," Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
    42. repec:awi:wpaper:0437 is not listed on IDEAS
    43. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    44. Blanford, Geoffrey J., 2009. "R&D investment strategy for climate change," Energy Economics, Elsevier, vol. 31(Supplemen), pages 27-36.
    45. Merton, Robert C, 1998. "Applications of Option-Pricing Theory: Twenty-Five Years Later," American Economic Review, American Economic Association, vol. 88(3), pages 323-349, June.
    46. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    47. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    48. Noailly, Joëlle, 2012. "Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation," Energy Economics, Elsevier, vol. 34(3), pages 795-806.
    49. Sari Pekkala Kerr & William R. Kerr, 2018. "Global Collaborative Patents," Economic Journal, Royal Economic Society, vol. 128(612), pages 235-272, July.
    50. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    51. Ufuk Akcigit & Salomé Baslandze & Stefanie Stantcheva, 2016. "Taxation and the International Mobility of Inventors," American Economic Review, American Economic Association, vol. 106(10), pages 2930-2981, October.
    52. Noailly, Joëlle & Smeets, Roger, 2016. "Financing energy innovation: The role of financing constraints for directed technical change from fossil-fuel to renewable innovation," EIB Working Papers 2016/06, European Investment Bank (EIB).
    53. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    54. Bréchet, Thierry & Meunier, Guy, 2014. "Are clean technology and environmental quality conflicting policy goals?," Resource and Energy Economics, Elsevier, vol. 38(C), pages 61-83.
    55. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages 18-26.
    56. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    57. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    58. Siping Luo & Mary E. Lovely & David Popp, 2013. "Intellectual Returnees as Drivers of Indigenous Innovation: Evidence from the Chinese Photovoltaic Industry," NBER Working Papers 19518, National Bureau of Economic Research, Inc.
    59. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    60. Aronsson, Thomas & Backlund, Kenneth & Sahlén, Linda, 2010. "Technology transfers and the clean development mechanism in a North-South general equilibrium model," Resource and Energy Economics, Elsevier, vol. 32(3), pages 292-309, August.
    61. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
    62. Lee G. Branstetter & Raymond Fisman & C. Fritz Foley, 2006. "Do Stronger Intellectual Property Rights Increase International Technology Transfer? Empirical Evidence from U. S. Firm-Level Panel Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(1), pages 321-349.
    63. Bosetti, Valentina & Drouet, Laurent, 2005. "Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model," Natural Resources Management Working Papers 12143, Fondazione Eni Enrico Mattei (FEEM).
    64. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    65. Noailly, Joëlle & Ryfisch, David, 2015. "Multinational firms and the internationalization of green R&D: A review of the evidence and policy implications," Energy Policy, Elsevier, vol. 83(C), pages 218-228.
    66. Goeschl, Timo & Perino, Grischa, 2009. "On backstops and boomerangs: Environmental R&D under technological uncertainty," Energy Economics, Elsevier, vol. 31(5), pages 800-809, September.
    67. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    68. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
    69. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    70. Semmler, Willi, 2015. "The Oxford Handbook of the Macroeconomics of Global Warming," OUP Catalogue, Oxford University Press, number 9780199856978 edited by Bernard, Lucas.
    71. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    72. Michael Grubb, 2000. "Economic dimensions of technological and global responses to the Kyoto protocol," Journal of Economic Studies, Emerald Group Publishing, vol. 27(1/2), pages 111-125, January.
    73. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    74. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    75. Sawhney, Aparna & Kahn, Matthew E., 2012. "Understanding cross-national trends in high-tech renewable power equipment exports to the United States," Energy Policy, Elsevier, vol. 46(C), pages 308-318.
    76. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    77. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    78. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    79. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    80. Sjak Smulders & Corrado Di Maria, 2012. "The Cost of Environmental Policy under Induced Technical Change," CESifo Working Paper Series 3886, CESifo.
    81. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    82. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    83. Wu, Ching-Yan & Mathews, John A., 2012. "Knowledge flows in the solar photovoltaic industry: Insights from patenting by Taiwan, Korea, and China," Research Policy, Elsevier, vol. 41(3), pages 524-540.
    84. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    85. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    86. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    87. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    88. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    89. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    90. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    91. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    92. Nick Johnstone & Ivan Haščič & Margarita Kalamova, 2010. "Environmental Policy Design Characteristics and Technological Innovation: Evidence from Patent Data," OECD Environment Working Papers 16, OECD Publishing.
    93. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    94. Erin Baker, 2009. "Optimal Policy under Uncertainty and Learning about Climate Change: A Stochastic Dominance Approach," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 11(5), pages 721-747, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grażyna Wojtkowska-Łodej & Elżbieta Jakubów, 2022. "The Role of Clean Generation Technologies in the Energy Transformation in Poland," Energies, MDPI, vol. 15(13), pages 1-18, July.
    2. Yanwen Sheng & Yi Miao & Jinping Song & Hongyan Shen, 2019. "The Moderating Effect of Innovation on the Relationship between Urbanization and CO 2 Emissions: Evidence from Three Major Urban Agglomerations in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    3. Yunpeng Sun & Asif Razzaq, 2022. "Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 944-957, October.
    4. Joohee Han & Juil Lee & Sang-Joon Kim, 2021. "How Does Family Involvement Affect Environmental Innovation? A Socioemotional Wealth Perspective," Sustainability, MDPI, vol. 13(23), pages 1-12, November.
    5. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    6. Andrey Novoselov & Ivan Potravnyy & IRINA NOVOSELOVA & Katherine Yeshia Chavez Ferreyra, 2018. "The Mechanism to Implement Environmental Investment Projects on the Basis of Equity Financing," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1488-1497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    4. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    5. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    6. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    7. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    8. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    9. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    10. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    11. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    12. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    13. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    14. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    15. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    16. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    17. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    18. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    19. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Geoffroy G Dolphin & Michael G Pollitt, 2020. "Identifying innovative actors in the Electricity Supply Industry using machine learning: an application to UK patent data," Working Papers EPRG2004, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    More about this item

    Keywords

    Technological change; Innovation; Diffusion; Growth; Patents;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:66:y:2017:i:3:d:10.1007_s10640-016-0085-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.