IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v5y1995i1p9-27.html
   My bibliography  Save this article

Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation

Author

Listed:
  • Olli Tahvonen

Abstract

Economic models which take into account the long-term effects of pollution in the environment specify pollution damage as a function of the accumulated stock. Several economists have proposed another formulation where damage is a function of the time derivative of the pollution stock. This paper considers the intertemporal efficiency implications of this formulation. The first specification is qualitative and the objective functional includes both the rate of change and the level of the pollution stock. The second specification is a stylized climate change model with a linear damage function where damage depends only on the rate of increase in global temperature. The analysis reveals that the efficiency properties of optimal pollution control are very sensitive to this change in the damage function. Intertemporal efficiency may require higher emissions compared with the level which is optimal from the myopic point of view. An increase in the rate of discount typically reduces the optimal emission level. Copyright Kluwer Academic Publishers 1995

Suggested Citation

  • Olli Tahvonen, 1995. "Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(1), pages 9-27, January.
  • Handle: RePEc:kap:enreec:v:5:y:1995:i:1:p:9-27
    DOI: 10.1007/BF00691907
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00691907
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00691907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    2. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    3. Falk Ita & Mendelsohn Robert, 1993. "The Economics of Controlling Stock Pollutants: An Efficient Strategy for Greenhouse Gases," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 76-88, July.
    4. C. G. Plourde, 1972. "A Model of Waste Accumulation and Disposal," Canadian Journal of Economics, Canadian Economics Association, vol. 5(1), pages 119-125, February.
    5. Jon Conrad & Lars Olson, 1992. "The economics of a stock pollutant: Aldicarb on Long Island," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(3), pages 245-258, May.
    6. Hartwick, John M., 1990. "Natural resources, national accounting and economic depreciation," Journal of Public Economics, Elsevier, vol. 43(3), pages 291-304, December.
    7. Tahvonen, Olli, 1994. "Carbon dioxide abatement as a differential game," European Journal of Political Economy, Elsevier, vol. 10(4), pages 685-705, December.
    8. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    9. Keeler, Emmett & Spence, Michael & Zeckhauser, Richard, 1972. "The optimal control of pollution," Journal of Economic Theory, Elsevier, vol. 4(1), pages 19-34, February.
    10. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, April.
    11. Andrew Dean & Peter Hoeller, 1992. "Costs of Reducing CO2 Emissions: Evidence from Six Global Models," OECD Economics Department Working Papers 122, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renan-Ulrich Goetz & Yolanda Martínez, 2013. "Nonpoint source pollution and two-part instruments," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 237-258, July.
    2. Moghayer, S. & Wagener, F.O.O., 2009. "Genesis of indifference thresholds and infinitely many indifference points in discrete time infinite horizon optimisation problems," CeNDEF Working Papers 09-14, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    4. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    5. Eric Bahel, 2018. "Cooperation and Subgame Perfect Equilibria in Global Pollution Problems with Critical Threshold," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 457-481, June.
    6. Michael Toman & Karen Palmer, 1997. "How should an accumulative toxic substance be banned?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(1), pages 83-102, January.
    7. Lucas Bretschger & Nujin Suphaphiphat, 2012. "Use Less, Pay More: Can Climate Policy Address the Unfortunate Event for Being Poor?," CER-ETH Economics working paper series 12/166, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    9. Hotel, Michael, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," Memorandum 29/2008, Oslo University, Department of Economics.
    10. Di Bartolomeo, Giovanni & Saltari, Enrico & Semmler, Willi, 2019. "The effects of political short-termism on transitions induced by pollution regulations," EconStor Preprints 200143, ZBW - Leibniz Information Centre for Economics.
    11. Conrad, Klaus, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," Discussion Papers 602, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    12. Iho Antti & Kitti Mitri, 2011. "A Tail-Payoff Puzzle in Dynamic Pollution Control," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-30, May.
    13. Saltari, Enrico & Travaglini, Giuseppe, 2016. "Pollution control under emission constraints: Switching between regimes," Energy Economics, Elsevier, vol. 53(C), pages 212-219.
    14. Michael Hoel, 2010. "Climate Change and Carbon Tax Expectations," CESifo Working Paper Series 2966, CESifo.
    15. Peter Michaelis & Heiko Wirths, 2020. "DICE-RD: an implementation of rate-related damages in the DICE model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 555-584, October.
    16. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    17. Di Bartolomeo Giovanni & Saltari Enrico & Semmler Willi, 2017. "Inattention and pollution regulation policies," wp.comunite 00130, Department of Communication, University of Teramo.
    18. Michael Hoel, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," CESifo Working Paper Series 2492, CESifo.
    19. H. Aaheim, 1999. "Climate Policy with Multiple Sources and Sinks of Greenhouse Gases," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 14(3), pages 413-430, October.
    20. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    21. Candel-Sanchez, Francisco, 2006. "The externalities problem of transboundary and persistent pollution," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 517-526, July.
    22. Hoel, Michael, 2009. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," Climate Change Modelling and Policy Working Papers 47175, Fondazione Eni Enrico Mattei (FEEM).
    23. Tarui, Nori, 2002. "Intertemporal Permit Trading For Stock Pollutants With Uncertainty," 2002 Annual meeting, July 28-31, Long Beach, CA 19752, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    24. Benford, Frank A., 1998. "On the Dynamics of the Regulation of Pollution: Incentive Compatible Regulation of a Persistent Pollutant," Journal of Environmental Economics and Management, Elsevier, vol. 36(1), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    2. Aaron M. Cook & James S. Shortle, 2022. "Pollutant Trading with Transport Time Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 355-382, June.
    3. Michael Toman & Karen Palmer, 1997. "How should an accumulative toxic substance be banned?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(1), pages 83-102, January.
    4. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    5. John Reilly & Kenneth Richards, 1993. "Climate change damage and the trace gas index issue," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 3(1), pages 41-61, February.
    6. W. J. McKibbin & T. J. Bok, "undated". "The Impact on the Asia-Pacific Region of Fiscal Policy of the United States and Japan," Discussion Papers 120, Brookings Institution International Economics.
    7. Jaeger, William K., 1995. "The welfare cost of a global carbon tax when tax revenues are recycled," Resource and Energy Economics, Elsevier, vol. 17(1), pages 47-67, May.
    8. Tsur, Yacov & Zemel, Amos, 1996. "Accounting for global warming risks: Resource management under event uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1289-1305.
    9. Ruiz Estrada, Mario Arturo, 2013. "The Macroeconomics evaluation of Climate Change Model (MECC-Model): The case Study of China," MPRA Paper 49158, University Library of Munich, Germany, revised 18 Aug 2013.
    10. Conrad, Klaus, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," Discussion Papers 602, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    11. Toth, Ferenc L, 1995. "Discounting in integrated assessments of climate change," Energy Policy, Elsevier, vol. 23(4-5), pages 403-409.
    12. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    13. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    14. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    15. Nathaniel O. Keohane & Benjamin Van Roy & Richard J. Zeckhauser, 2000. "Controlling Stocks and Flows to Promote Quality: The Environment, With Applications to Physical and Human Capital," NBER Working Papers 7727, National Bureau of Economic Research, Inc.
    16. Changxin Liu & Hailing Zhang & Zheng Wang, 2019. "Study on the Functional Improvement of Economic Damage Assessment for the Integrated Assessment Model," Sustainability, MDPI, vol. 11(5), pages 1-18, February.
    17. Rubio, Santiago & Fisher, Anthony, 1994. "Optimal Capital Accumulation and Stock Pollution: The Greenhouse Effect," CUDARE Working Papers 198637, University of California, Berkeley, Department of Agricultural and Resource Economics.
    18. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    19. Makropoulou, Vasiliki & Dotsis, George & Markellos, Raphael N., 2013. "Environmental policy implications of extreme variations in pollutant stock levels and socioeconomic costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 417-428.
    20. Pongkijvorasin, Sittidaj & Pitafi, Basharat A.K. & Roumasset, James A., 2006. "Pricing Resource Extraction With Stock Externalities," 2006 Annual meeting, July 23-26, Long Beach, CA 21340, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Pollution control; CO 2 ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:5:y:1995:i:1:p:9-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.