IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v22y2020i4d10.1007_s10018-020-00269-4.html
   My bibliography  Save this article

DICE-RD: an implementation of rate-related damages in the DICE model

Author

Listed:
  • Peter Michaelis

    (University of Augsburg)

  • Heiko Wirths

    (Amprion GmbH)

Abstract

A growing body of literature from the natural and the social sciences indicates that the rate of temperature increase is another key driver of total climate damages, next to the absolute increase in temperature compared to the pre-industrial level. Nonetheless, the damage functions employed in integrated assessment models that aim at studying the economics of climate change usually are based solely on the absolute temperature increase. Hence, these models neglect additional damages that will occur if the rate of temperature increase exceeds a certain threshold that overstrains the adaptive capacities of ecological and social systems. In the present paper, we implement such rate-related damages in the well-known integrated assessment model DICE-2016R. Using the resulting model variant DICE-RD, we show for several scenarios that an insufficient climate policy that ignores rate-related damages can lead to substantial economic losses.

Suggested Citation

  • Peter Michaelis & Heiko Wirths, 2020. "DICE-RD: an implementation of rate-related damages in the DICE model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 555-584, October.
  • Handle: RePEc:spr:envpol:v:22:y:2020:i:4:d:10.1007_s10018-020-00269-4
    DOI: 10.1007/s10018-020-00269-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-020-00269-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-020-00269-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Hope, 2013. "Critical issues for the calculation of the social cost of CO 2 : why the estimates from PAGE09 are higher than those from PAGE2002," Climatic Change, Springer, vol. 117(3), pages 531-543, April.
    2. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    3. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    4. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    5. Kenneth J. Arrow & Maureen L. Cropper & Christian Gollier & Ben Groom & Geoffrey M. Heal & Richard G. Newell & William D. Nordhaus & Robert S. Pindyck & William A. Pizer & Paul R. Portney & Thomas Ste, 2014. "Editor's Choice Should Governments Use a Declining Discount Rate in Project Analysis?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 145-163.
    6. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    7. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    8. Lawrence H. Goulder & Roberton C. Williams, 2012. "The Choice Of Discount Rate For Climate Change Policy Evaluation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-18.
    9. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Climate and Conflict," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 577-617, August.
    10. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    11. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    12. Sterner, Thomas & Tol, Richard S. J. & Weitzman, Martin L. & Pizer, William A. & Portney, Paul R. & Arrow, Kenneth J. & Cropper, Maureen L. & Gollier, Christian & Groom, Ben & Heal, Geoffrey M. & Newe, 2014. "Should Governments Use a Declining Discount Rate in Project Analysis?," Scholarly Articles 33373349, Harvard University Department of Economics.
    13. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    14. William Nordhaus, 2019. "Climate Change: The Ultimate Challenge for Economics," American Economic Review, American Economic Association, vol. 109(6), pages 1991-2014, June.
    15. Olli Tahvonen, 1995. "Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(1), pages 9-27, January.
    16. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    17. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    18. Thomas Lukas Frölicher & Michael Winton & Jorge Louis Sarmiento, 2014. "Continued global warming after CO2 emissions stoppage," Nature Climate Change, Nature, vol. 4(1), pages 40-44, January.
    19. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    20. Solomon Hsiang & Marshall Burke, 2014. "Climate, conflict, and social stability: what does the evidence say?," Climatic Change, Springer, vol. 123(1), pages 39-55, March.
    21. Andries Hof & Chris Hope & Jason Lowe & Michael Mastrandrea & Malte Meinshausen & Detlef Vuuren, 2012. "The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component," Climatic Change, Springer, vol. 113(3), pages 897-917, August.
    22. Heiko Wirths & Joachim Rathmann & Peter Michaelis, 2018. "The permafrost carbon feedback in DICE-2013R modeling and empirical results," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 109-124, January.
    23. Christoph Bohringer, Andreas Loschel and Thomas F. Rutherford, 2006. "Efficiency Gains from "What"-Flexibility in Climate Policy An Integrated CGE Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 405-424.
    24. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    25. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    26. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    27. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rickels, Wilfried & Schwinger, Jörg, 2021. "Implications of temperature overshoot dynamics for climate and carbon dioxide removal policies in the DICE model," Open Access Publications from Kiel Institute for the World Economy 248716, Kiel Institute for the World Economy (IfW Kiel).
    2. Rogna, Marco & Vogt, Carla J., 2021. "Accounting for inequality aversion can justify the 2° C goal," Ruhr Economic Papers 925, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    3. Wei Jin & Rick van der Ploeg & Lin Zhang, 2020. "Do We Still Need Carbon-Intensive Capital When Transitioning to a Green Economy?," CESifo Working Paper Series 8745, CESifo.
    4. Marco Rogna & Carla J. Vogt, 2022. "Optimal climate policies under fairness preferences," Climatic Change, Springer, vol. 174(3), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeCanio, Stephen J. & Manski, Charles F. & Sanstad, Alan H., 2022. "Minimax-regret climate policy with deep uncertainty in climate modeling and intergenerational discounting," Ecological Economics, Elsevier, vol. 201(C).
    2. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    3. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    4. Marshall Burke & Melanie Craxton & Charles D. Kolstad & Chikara Onda, 2016. "Some Research Challenges In The Economics Of Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-14, May.
    5. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    6. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    7. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    8. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    9. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    10. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    11. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    12. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    13. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    14. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    15. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Peter Harrison Howard & Derek Sylvan, 2020. "Wisdom of the experts: Using survey responses to address positive and normative uncertainties in climate-economic models," Climatic Change, Springer, vol. 162(2), pages 213-232, September.
    17. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    18. Richard S.J. Tol, 2018. "The impact of climate change and the social cost of carbon," Working Paper Series 1318, Department of Economics, University of Sussex Business School.
    19. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    20. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.

    More about this item

    Keywords

    Integrated assessment; DICE model; Climate policy; Rate of temperature increase;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:22:y:2020:i:4:d:10.1007_s10018-020-00269-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.