IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i6d10.1007_s10614-023-10542-9.html
   My bibliography  Save this article

Forecasting House Prices through Credit Conditions: A Bayesian Approach

Author

Listed:
  • Rosa Drift

    (Delft University of Technology)

  • Jan Haan

    (Delft University of Technology)

  • Peter Boelhouwer

    (Delft University of Technology)

Abstract

As housing development and housing market policies involve many long-term decisions, improving house price predictions could benefit the functioning of the housing market. Therefore, in this paper, we investigate how house price predictions can be improved. In particular, the merits of Bayesian estimation techniques in enhancing house price predictions are examined in this study. We compare the pseudo out-of-sample forecasting power of three Bayesian models—a Bayesian vector autoregression in levels (BVAR-l), a Bayesian vector autoregression in differences (BVAR-d), and a Bayesian vector error correction model (BVECM)—and their non-Bayesian counterparts. These techniques are compared using a theoretical model that predicts the borrowing capacity of credit-constrained and unconstrained households to affect house prices. The findings indicate that the Bayesian models outperform their non-Bayesian counterparts, and within the class of Bayesian models, the BVAR-d is found to be more accurate than the BVAR-l. For the two winning Bayesian models, i.e., the BVECM and the BVAR-d, the difference in forecasting power is more ambiguous; which model prevails depends on the desired forecasting horizon and the state of the economy. Hence, both Bayesian models may be considered when conducting research on house prices.

Suggested Citation

  • Rosa Drift & Jan Haan & Peter Boelhouwer, 2024. "Forecasting House Prices through Credit Conditions: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3381-3405, December.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-023-10542-9
    DOI: 10.1007/s10614-023-10542-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10542-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10542-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Clayton & David Ling & Andy Naranjo, 2009. "Commercial Real Estate Valuation: Fundamentals Versus Investor Sentiment," The Journal of Real Estate Finance and Economics, Springer, vol. 38(1), pages 5-37, January.
    2. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    3. Sophocles Brissimis & Thomas Vlassopoulos, 2009. "The Interaction between Mortgage Financing and Housing Prices in Greece," The Journal of Real Estate Finance and Economics, Springer, vol. 39(2), pages 146-164, August.
    4. Hossein Hassani & Zara Ghodsi & Rangan Gupta & Mawuli Segnon, 2017. "Forecasting Home Sales in the Four Census Regions and the Aggregate US Economy Using Singular Spectrum Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 83-97, January.
    5. Leung, Charles Ka Yui, 2014. "Error correction dynamics of house prices: An equilibrium benchmark," Journal of Housing Economics, Elsevier, vol. 25(C), pages 75-95.
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    8. Mikhed, Vyacheslav & Zemcík, Petr, 2009. "Do house prices reflect fundamentals? Aggregate and panel data evidence," Journal of Housing Economics, Elsevier, vol. 18(2), pages 140-149, June.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    11. Renhe Liu & Eddie Chi-man Hui & Jiaqi Lv & Yi Chen, 2017. "What Drives Housing Markets: Fundamentals or Bubbles?," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 395-415, November.
    12. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    13. Hort, Katinka, 1998. "The Determinants of Urban House Price Fluctuations in Sweden 1968-1994," Journal of Housing Economics, Elsevier, vol. 7(2), pages 93-120, June.
    14. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    15. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    16. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    17. Simone Emiliozzi & Elisa Guglielminetti & Michele Loberto, 2018. "Forecasting house prices in Italy," Questioni di Economia e Finanza (Occasional Papers) 463, Bank of Italy, Economic Research and International Relations Area.
    18. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    19. Patricia Fraser & Martin Hoesli & Lynn McAlevey, 2008. "House Prices and Bubbles in New Zealand," The Journal of Real Estate Finance and Economics, Springer, vol. 37(1), pages 71-91, July.
    20. Matteo Iacoviello & Stefano Neri, 2010. "Housing Market Spillovers: Evidence from an Estimated DSGE Model," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 125-164, April.
    21. Oh, Hyunseung & Yoon, Chamna, 2020. "Time to build and the real-options channel of residential investment," Journal of Financial Economics, Elsevier, vol. 135(1), pages 255-269.
    22. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    23. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    24. repec:arz:wpaper:eres2009-275 is not listed on IDEAS
    25. Cuestas, Juan Carlos, 2017. "House prices and capital inflows in Spain during the boom: Evidence from a cointegrated VAR and a structural Bayesian VAR," Journal of Housing Economics, Elsevier, vol. 37(C), pages 22-28.
    26. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    27. Clayton, Jim, 1997. "Are Housing Price Cycles Driven by Irrational Expectations?," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 341-363, May.
    28. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    29. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    30. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    31. Christian Hott & Pierre Monnin, 2008. "Fundamental Real Estate Prices: An Empirical Estimation with International Data," The Journal of Real Estate Finance and Economics, Springer, vol. 36(4), pages 427-450, May.
    32. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    33. Gary Koop, 2017. "Bayesian Methods for Empirical Macroeconomics," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 9(1), pages 33-56, June.
    34. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    35. Christoph Hanck & Jan Prüser, 2020. "House prices and interest rates: Bayesian evidence from Germany," Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3073-3089, June.
    36. Malpezzi, Stephen, 1999. "A Simple Error Correction Model of House Prices," Journal of Housing Economics, Elsevier, vol. 8(1), pages 27-62, March.
    37. Villani, Mattias, 2005. "Bayesian Reference Analysis Of Cointegration," Econometric Theory, Cambridge University Press, vol. 21(2), pages 326-357, April.
    38. Petr Zemcik & Vyacheslav Mikhed, 2009. "Do House Prices Reflect Fundamentals? Aggregate and Panel Data Evidence," ERES eres2009_275, European Real Estate Society (ERES).
    39. Tuluca, Sorin A & Myer, F C Neil & Webb, James R, 2000. "Dynamics of Private and Public Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 21(3), pages 279-296, November.
    40. Ogonna Nneji & Chris Brooks & Charles W. R. Ward, 2015. "Speculative Bubble Spillovers across Regional Housing Markets," Land Economics, University of Wisconsin Press, vol. 91(3), pages 516-535.
    41. Rangan Gupta & Christian Tipoy & Sonali Das, 2010. "Could We Have Predicted the Recent Downturn in Home Sales in the Four U.S. Census Regions?," Journal of Housing Research, Taylor & Francis Journals, vol. 19(2), pages 111-128, January.
    42. Rangan Gupta & Stephen Miller, 2012. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 339-361, April.
    43. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    44. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    45. Ralf Korn & Bilgi Yilmaz, 2022. "House Prices as a Result of Trading Activities: A Patient Trader Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 281-303, June.
    46. Stock, James H, 1987. "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," Econometrica, Econometric Society, vol. 55(5), pages 1035-1056, September.
    47. Tolga A. Ozbakan & Serdar Kale & Irem Dikmen, 2019. "Exploring House Price Dynamics: An Agent-Based Simulation with Behavioral Heterogeneity," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 783-807, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    2. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
    3. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    4. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    5. Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
    6. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    7. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    8. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    9. Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
    10. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    11. Gupta, Rangan & Kotzé, Kevin, 2017. "The role of oil prices in the forecasts of South African interest rates: A Bayesian approach," Energy Economics, Elsevier, vol. 61(C), pages 270-278.
    12. Lozano, Francisco-Javier, 2013. "Evaluación de modelos de predicción para la venta de viviendas [Evaluation of forecasting models for house sales]," MPRA Paper 118652, University Library of Munich, Germany.
    13. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    14. Petre Caraiani, 2014. "Do money and financial variables help forecasting output in emerging European Economies?," Empirical Economics, Springer, vol. 46(2), pages 743-763, March.
    15. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    16. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    17. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    18. Raputsoane, Leroi, 2024. "Foreign exchange developments and the minerals industry," MPRA Paper 123014, University Library of Munich, Germany.
    19. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    20. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    21. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.

    More about this item

    Keywords

    Forecasting; House prices; Bayesian VAR; Bayesian VECM; Cointegration;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-023-10542-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.