IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i6d10.1007_s10614-023-10542-9.html
   My bibliography  Save this article

Forecasting House Prices through Credit Conditions: A Bayesian Approach

Author

Listed:
  • Rosa Drift

    (Delft University of Technology)

  • Jan Haan

    (Delft University of Technology)

  • Peter Boelhouwer

    (Delft University of Technology)

Abstract

As housing development and housing market policies involve many long-term decisions, improving house price predictions could benefit the functioning of the housing market. Therefore, in this paper, we investigate how house price predictions can be improved. In particular, the merits of Bayesian estimation techniques in enhancing house price predictions are examined in this study. We compare the pseudo out-of-sample forecasting power of three Bayesian models—a Bayesian vector autoregression in levels (BVAR-l), a Bayesian vector autoregression in differences (BVAR-d), and a Bayesian vector error correction model (BVECM)—and their non-Bayesian counterparts. These techniques are compared using a theoretical model that predicts the borrowing capacity of credit-constrained and unconstrained households to affect house prices. The findings indicate that the Bayesian models outperform their non-Bayesian counterparts, and within the class of Bayesian models, the BVAR-d is found to be more accurate than the BVAR-l. For the two winning Bayesian models, i.e., the BVECM and the BVAR-d, the difference in forecasting power is more ambiguous; which model prevails depends on the desired forecasting horizon and the state of the economy. Hence, both Bayesian models may be considered when conducting research on house prices.

Suggested Citation

  • Rosa Drift & Jan Haan & Peter Boelhouwer, 2024. "Forecasting House Prices through Credit Conditions: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3381-3405, December.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-023-10542-9
    DOI: 10.1007/s10614-023-10542-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10542-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10542-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Forecasting; House prices; Bayesian VAR; Bayesian VECM; Cointegration;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-023-10542-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.