IDEAS home Printed from https://ideas.repec.org/a/ren/journl/v9y2017i1p33-56.html
   My bibliography  Save this article

Bayesian Methods for Empirical Macroeconomics

Author

Listed:
  • Gary Koop

    (University of Strathclyde and Rimini Centre for Economic Analysis)

Abstract

"Bayesian econometric methods are increasingly popular in empirical macroeconomics. They have been particularly popular among macroeconomists working with Big Data (where the number of variables under study is large relative to the number of observations). This paper, which is based on a keynote address at the Rimini Centre for Economic Analysis' 2016 Money-Macro-Finance Workshop, explains why this is so. It discusses the problems that arise with conventional econometric methods and how Bayesian methods can successfully overcome them either through use of prior shrinkage or through model averaging. The discussion is kept at a relatively non-technical level, providing the main ideas underlying and motivation for the models and methods used. It begins with single equation models (such as regression) with many explanatory variables, then moves on to multiple equation models (such as Vector Autoregressive, VAR, models) before tacking the challenge caused by parameter change (e.g. changes in VAR coefficients or volatility). It concludes with an example of how the Bayesian can address all these challenges in a large multi-country VAR involving 133 variables: 7 variables for each of 19 countries."

Suggested Citation

  • Gary Koop, 2017. "Bayesian Methods for Empirical Macroeconomics," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 9(1), pages 33-56, June.
  • Handle: RePEc:ren:journl:v:9:y:2017:i:1:p:33-56
    as

    Download full text from publisher

    File URL: http://rofea.org/index.php?journal=journal&page=article&op=view&path%5B%5D=338&path%5B%5D=156
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
    2. Anastasios Evgenidis & Apostolos Fasianos, 2019. "Monetary Policy and Wealth Inequalities in Great Britain: Assessing the role of unconventional policies for a decade of household data," Papers 1912.09702, arXiv.org.
    3. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    4. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    5. van Dijk Herman K., 2024. "Challenges and Opportunities for Twenty First Century Bayesian Econometricians: A Personal View," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 155-176, April.
    6. Lusompa, Amaze, 2019. "Local Projections, Autocorrelation, and Efficiency," MPRA Paper 99856, University Library of Munich, Germany, revised 11 Apr 2020.
    7. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    8. Anastasios Evgenidis & Apostolos Fasianos, 2021. "Unconventional Monetary Policy and Wealth Inequalities in Great Britain," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 115-175, February.
    9. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
    10. Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
    11. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    12. Karol Szafranek & Marek Kwas & Grzegorz Szafrański & Zuzanna Wośko, 2020. "Common Determinants of Credit Default Swap Premia in the North American Oil and Gas Industry. A Panel BMA Approach," Energies, MDPI, vol. 13(23), pages 1-23, November.
    13. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    14. Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
    15. Evgenidis, Anastasios & Salachas, Evangelos, 2019. "Unconventional monetary policy and the credit channel in the euro area," Economics Letters, Elsevier, vol. 185(C).
    16. Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    17. Lake, A., 2020. "Optimal Feasible Expectations in Economics and Finance," Cambridge Working Papers in Economics 20105, Faculty of Economics, University of Cambridge.

    More about this item

    Keywords

    multivariate time series; vector autoregression; state space model;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ren:journl:v:9:y:2017:i:1:p:33-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Jerzy (Jurek) Konieczny (email available below). General contact details of provider: http://www.rcfea.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.