IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201214.html
   My bibliography  Save this paper

Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria)

Abstract

This paper considers the ability of large-scale (involving 145 fundamental variables) time-series models, estimated based on dynamic factor analysis and Bayesian shrinkage, to forecast real house price growth rates of the four US census regions and the aggregate US economy. Besides, the standard Minnesota prior, we also use additional priors that constrain the sum of coefficients of the VAR models. We compare one- to twenty four-months-ahead forecasts of the large-scale models over an out-of-sample horizon of 1995:1-2009:3, based on an insample of 1968:2-1994:12, relative to a random walk model and a small-scale VAR model comprising of just the five real house price growth rates. In addition to the forecast comparison exercise across large- and small-scale models, we also look at the ability of the “optimal” model (i.e., the model that produces the minimum average mean squared forecast error (MSFE)) for a specific region, in predicting ex ante real house prices (in levels) over the period of 2009:4 till 2012:2. Factor-based models (classical or Bayesian) performs the best for the North East, Mid- West, West census regions and the aggregate US economy, and equally as well to a small-scale VAR for the South region. The “optimal” factor models also tend to predict the downward trend in the data when we conduct an ex ante forecasting exercise. Our results highlight the importance of information content in large number of fundamentals in predicting house prices accurately.

Suggested Citation

  • Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201214
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Vargas-Silva, Carlos, 2008. "Monetary policy and the US housing market: A VAR analysis imposing sign restrictions," Journal of Macroeconomics, Elsevier, vol. 30(3), pages 977-990, September.
    4. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    5. Rangan Gupta & Faaiqa Hartley, 2013. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
    6. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    7. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    8. Rangan Gupta & Marius Jurgilas & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working Papers 201009, University of Pretoria, Department of Economics.
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    10. Sonali Das & Rangan Gupta & Alain Kabundi, 2010. "The Blessing of Dimensionality in Forecasting Real House Price Growth in the Nine Census Divisions of the U.S," Journal of Housing Research, Taylor & Francis Journals, vol. 19(1), pages 89-109, January.
    11. Ben S. Bernanke & Mark Gertler, 1995. "Inside the Black Box: The Credit Channel of Monetary Policy Transmission," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 27-48, Fall.
    12. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    13. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
    14. Rangan Gupta & Stephen M. Miller, 2009. "The Time-Series Properties on Housing Prices: A Case Study of the Southern California Market," Working papers 2009-10, University of Connecticut, Department of Economics, revised Dec 2009.
    15. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    16. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    17. Matteo Iacoviello & Stefano Neri, 2010. "Housing Market Spillovers: Evidence from an Estimated DSGE Model," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 125-164, April.
    18. Thomas Hyclak & Geraint Johnes, 1999. "original: House prices and regional labor markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 33(1), pages 33-49.
    19. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    20. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013. "Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes," Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
    21. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    22. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    23. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    24. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    25. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    26. Gerald A. Carlino & Robert H. DeFina, 1997. "The differential regional effects of monetary policy: evidence from the U.S. States," Working Papers 97-12, Federal Reserve Bank of Philadelphia.
    27. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    28. Topel, Robert H & Rosen, Sherwin, 1988. "Housing Investment in the United States," Journal of Political Economy, University of Chicago Press, vol. 96(4), pages 718-740, August.
    29. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    30. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    31. Sonali Das & Rangan Gupta & Alain Kabundi, 2011. "Forecasting regional house price inflation: a comparison between dynamic factor models and vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(2), pages 288-302, March.
    32. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    33. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    34. Rangan Gupta & Stephen Miller, 2012. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 339-361, April.
    35. Chris Bloor & Troy Matheson, 2010. "Analysing shock transmission in a data-rich environment: a large BVAR for New Zealand," Empirical Economics, Springer, vol. 39(2), pages 537-558, October.
    36. Rangan Gupta & Alain Kabundi, 2010. "The effect of monetary policy on house price inflation," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(6), pages 616-626, November.
    37. Sei-Wan Kim & Radha Bhattacharya, 2009. "Regional Housing Prices in the USA: An Empirical Investigation of Nonlinearity," The Journal of Real Estate Finance and Economics, Springer, vol. 38(4), pages 443-460, May.
    38. Gerald Carlino & Robert Defina, 1998. "The Differential Regional Effects Of Monetary Policy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 572-587, November.
    39. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    40. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice D. Simo - Kengne & Mehmet Balcilar & Rangan Gupta & Monique Reid & Goodness C. Aye, 2012. "Is the relationship between monetary policy and house prices asymmetric in South Africa? Evidence from a Markov-Switching Vector Autoregressive mode," Working Papers 15-26, Eastern Mediterranean University, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    2. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    3. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working Papers 200913, University of Pretoria, Department of Economics.
    4. Rangan Gupta & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working papers 2010-06, University of Connecticut, Department of Economics.
    5. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    6. Balcilar, Mehmet & Gupta, Rangan & Shah, Zahra B., 2011. "An in-sample and out-of-sample empirical investigation of the nonlinearity in house prices of South Africa," Economic Modelling, Elsevier, vol. 28(3), pages 891-899, May.
    7. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    8. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    9. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    10. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    11. Pirschel, Inske & Wolters, Maik H., 2014. "Forecasting German key macroeconomic variables using large dataset methods," Kiel Working Papers 1925, Kiel Institute for the World Economy (IfW Kiel).
    12. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    13. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    14. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
    17. Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    18. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    19. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.
    20. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    21. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.

    More about this item

    Keywords

    House prices; Forecasting; Factor Augmented Models; Large-Scale; BVAR models;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.