IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i1d10.1007_s10614-023-10432-0.html
   My bibliography  Save this article

Reference Vector-Based Multiobjective Clustering Ensemble Approach for Time Series Forecasting

Author

Listed:
  • Chao Liu

    (Beijing University of Technology)

  • Fengfeng Gao

    (Beijing University of Technology)

  • Mengwan Zhang

    (Beijing University of Technology)

  • Yuanrui Li

    (Beijing University of Technology)

  • Cun Qian

    (Beijing University of Technology)

Abstract

This paper integrates the maximal overlap discrete wavelet transform (MODWT), long and short-term memory neural network (EA-LSTM) of evolutionary attention mechanism and reference vector based clustering algorithm (RVMOC) and proposes a new prediction method of the stock market return rate, which is referred to as the stock market return rate prediction method based on MODWT-EA-LSTM-LSTM-RVMOC. This method uses a clustering strategy based on a reference vector to extend decomposition-integrated learning to nonlinear integrated weighted learning based on local data feature weighting, overcomes the deficiency of the integrated learning stage in the decomposition-integration method, and effectively solves the problem of artificial experience setting of the objective function weight coefficient and clustering accuracy in existing cluster-integrated learning. The empirical results show that compared with the single model and decomposition-integration learning model, the MODWT-EA-LSTM-RVMOC algorithm is better than other models in both prediction error and prediction hit rate. The results also indicate that the RVMOC clustering algorithm can effectively improve the prediction performance of the decomposition-integration model.

Suggested Citation

  • Chao Liu & Fengfeng Gao & Mengwan Zhang & Yuanrui Li & Cun Qian, 2024. "Reference Vector-Based Multiobjective Clustering Ensemble Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 181-210, July.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10432-0
    DOI: 10.1007/s10614-023-10432-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10432-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10432-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10432-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.