IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v44y2024i6p1069-1094.html
   My bibliography  Save this article

Considering momentum spillover effects via graph neural network in option pricing

Author

Listed:
  • Yao Wang
  • Jingmei Zhao
  • Qing Li
  • Xiangyu Wei

Abstract

Traditional options pricing relies on underlying asset volatility and contract properties. However, asset volatility is affected by the “lead–lag effects,” known as the “momentum spillover effect.” To address this, we propose a proxy measuring correlated options' influence based on maturity date. Findings indicate that 1‐day‐lagged proxy indicators positively impact option returns. Furthermore, to capture the dynamic effects of correlated options, we introduce a deep graph neural network‐based model (GNN‐MS). Empirical results on Shanghai Stock Exchange 50 exchange‐traded fund options reveal GNN‐MS significantly outperforms classics, enhancing root‐mean‐square error by at least 8.81%. This study provides novel insights into option pricing considering momentum spillover effects.

Suggested Citation

  • Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
  • Handle: RePEc:wly:jfutmk:v:44:y:2024:i:6:p:1069-1094
    DOI: 10.1002/fut.22506
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22506
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    3. Xiangyu Wei & Zhilong Xie & Rui Cheng & Di Zhang & Qing Li, 2021. "An Intelligent Learning and Ensembling Framework for Predicting Option Prices," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4237-4260, December.
    4. Lee, Charles M.C. & Sun, Stephen Teng & Wang, Rongfei & Zhang, Ran, 2019. "Technological links and predictable returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 76-96.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    7. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    8. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    9. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    10. Gang‐Zhi Fan & Ming Pu & Tien Foo Sing & Xiaoyu Zhang, 2022. "Risk aversion and urban land development options," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(3), pages 767-788, September.
    11. Yeguang Chi & Wenyan Hao & Yifei Zhang, 2022. "Volatility model applications in China's SSE50 options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1704-1720, September.
    12. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    13. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    14. Yang, Yan-Hong & Shao, Ying-Hui, 2020. "Time-dependent lead-lag relationships between the VIX and VIX futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    15. Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2014. "Assessing the performance of symmetric and asymmetric implied volatility functions," Review of Quantitative Finance and Accounting, Springer, vol. 42(3), pages 373-397, April.
    16. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    17. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    18. Patel, Vinay & Putniņš, Tālis J. & Michayluk, David & Foley, Sean, 2020. "Price discovery in stock and options markets," Journal of Financial Markets, Elsevier, vol. 47(C).
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Rong Xing & Qing Li & Jingmei Zhao & Xiaoqing Xu, 2021. "Media-based Corporate Network and Its Effects on Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4211-4236, December.
    23. Andros Gregoriou & Jerome Healy & Christos Ioannidis, 2007. "Hedging under the influence of transaction costs: An empirical investigation on FTSE 100 index options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 471-494, May.
    24. Ali, Usman & Hirshleifer, David, 2020. "Shared analyst coverage: Unifying momentum spillover effects," Journal of Financial Economics, Elsevier, vol. 136(3), pages 649-675.
    25. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    26. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    27. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    28. Ana M. Monteiro & António A. F. Santos, 2022. "Option prices for risk‐neutral density estimation using nonparametric methods through big data and large‐scale problems," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 152-171, January.
    29. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    30. Kenneth R. Ahern & Jarrad Harford, 2014. "The Importance of Industry Links in Merger Waves," Journal of Finance, American Finance Association, vol. 69(2), pages 527-576, April.
    31. Bali, Turan G. & Beckmeyer, Heiner & Moerke, Mathis & Weigert, Florian, 2021. "Option return predictability with machine learning and big data," CFR Working Papers 21-08, University of Cologne, Centre for Financial Research (CFR).
    32. Bilson, John F.O. & Kang, Sang Baum & Luo, Hong, 2015. "The term structure of implied dividend yields and expected returns," Economics Letters, Elsevier, vol. 128(C), pages 9-13.
    33. Jamie Alcock & Trent Carmichael, 2008. "Nonparametric American option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(8), pages 717-748, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanchu Liu & Chen Liu & Yiyao Chen & Xianming Sun, 2024. "Option‐Implied Ambiguity and Equity Return Predictability," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1556-1577, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    2. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    3. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    4. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    5. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    6. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    7. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    8. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    9. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    10. Hu, May & Park, Jason, 2019. "Valuation of collateralized debt obligations: An equilibrium model," Economic Modelling, Elsevier, vol. 82(C), pages 119-135.
    11. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    12. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    13. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    14. Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
    15. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
    16. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    17. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    18. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    19. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:44:y:2024:i:6:p:1069-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.