IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p314-d1028131.html
   My bibliography  Save this article

Option Pricing Using LSTM: A Perspective of Realized Skewness

Author

Listed:
  • Yan Liu

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Xiong Zhang

    (School of Economics, Ocean University of China, Qingdao 266100, China)

Abstract

Deep learning has drawn great attention in the financial field due to its powerful ability in nonlinear fitting, especially in the studies of asset pricing. In this paper, we proposed a long short-term memory option pricing model with realized skewness by fully considering the asymmetry of asset return in emerging markets. It was applied to price the ETF50 options of China. In order to emphasize the improvement of this model, a comparison with a parametric method, such as Black-Scholes (BS), and machine learning methods, such as support vector machine (SVM), random forests and recurrent neural network (RNN), was conducted. Moreover, we also took the characteristic of heavy tail into consideration and studied the effect of realized kurtosis on pricing to prove the robustness of the skewness. The empirical results indicate that realized skewness significantly improves the pricing performance of LSTM among moneyness states except for in-the-money call options. Specifically, the LSTM model with realized skewness outperforms the classical method and other machine learning methods in all metrics.

Suggested Citation

  • Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:314-:d:1028131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    2. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
    3. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    4. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Gurdip Bakshi & Dilip Madan, 2006. "A Theory of Volatility Spreads," Management Science, INFORMS, vol. 52(12), pages 1945-1956, December.
    7. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2016. "Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry," Journal of Finance, American Finance Association, vol. 71(5), pages 2145-2192, October.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    10. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    11. Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
    12. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    13. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    14. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    15. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    16. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    17. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    18. Huisu Jang & Jaewook Lee, 2019. "Generative Bayesian neural network model for risk-neutral pricing of American index options," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 587-603, April.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    21. Junhuan Zhang & Wenjun Huang, 2021. "Option hedging using LSTM-RNN: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1753-1772, October.
    22. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    23. Zhuo Huang & Tianyi Wang & Peter Reinhard Hansen, 2017. "Option Pricing with the Realized GARCH Model: An Analytical Approximation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(4), pages 328-358, April.
    24. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    2. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    3. Tianyi Wang & Sicong Cheng & Fangsheng Yin & Mei Yu, 2022. "Overnight volatility, realized volatility, and option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1264-1283, July.
    4. Fang Liang & Lingshan Du & Zhuo Huang, 2023. "Option pricing with overnight and intraday volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1576-1614, November.
    5. Fang Liang & Lingshan Du, 2024. "Option pricing with dynamic conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1154-1188, July.
    6. Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
    7. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    8. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    9. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    10. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    11. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    12. Zhiyuan Pan & Yudong Wang & Li Liu, 2021. "Realized bipower variation, jump components, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1933-1958, December.
    13. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    14. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    15. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    16. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    17. Pan, Zhiyuan & Shuai, Jiangyu & Liang, Zhilei & Sun, Xianchao, 2022. "Jump dynamics, spillover effect and option valuation," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    19. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    20. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:314-:d:1028131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.