IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt0591r5x3.html
   My bibliography  Save this paper

The Producer Surplus Associated with Gasolne Fuel Use in the United States

Author

Listed:
  • Sun, Yongling
  • Delucchi, Mark A.
  • Lawell, C.-Y. Cynthia L.
  • Ogden, Joan M.

Abstract

Estimating the producer surplus – the revenue above the average long-run cost – is an important part of social cost-benefit analyses of changes in petroleum use. This paper estimates the producer surplus associated with changes in gasoline fuel use in the United States, and then applies the estimates of producer surplus to two kinds of social cost-benefit analyses related to petroleum use: (1) estimating the wealth transfer from consumers to producers as a result of policies that affect oil use and oil imports to the US, and (2) comparing the actual average cost of gasoline with the average cost of environmentally superior alternatives to gasoline, such as hydrogen. Our results show that a 50% reduction in gasoline use in the US in 2004 would have saved the US $72 billion in producer surplus payments to foreign oil producers. Applying our estimates to the comparison of the social lifetime cost of hydrogen vehicles versus gasoline vehicles, we find that inconsistently counting producer surplus from a US national perspective while counting climate change damages from a global perspective can overstate the present value lifetime costs of gasoline vehicles by $2,200 to $9,800 per vehicle.

Suggested Citation

  • Sun, Yongling & Delucchi, Mark A. & Lawell, C.-Y. Cynthia L. & Ogden, Joan M., 2019. "The Producer Surplus Associated with Gasolne Fuel Use in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0591r5x3, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt0591r5x3
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0591r5x3.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delucchi, Mark, 2005. "AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM," Institute of Transportation Studies, Working Paper Series qt5kx1h5xb, Institute of Transportation Studies, UC Davis.
    2. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    3. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    4. Delucchi, Mark A., 2004. "Summary of the Nonmonetary Exernalities of Motor-Vehicle Use: Report #9 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, Based on 1990-1991 Data," Institute of Transportation Studies, Working Paper Series qt9367d6jg, Institute of Transportation Studies, UC Davis.
    5. Delucchi, Mark, 2005. "AVCEM: Advanced-Vehicle Cost and Energy Use Model," Institute of Transportation Studies, Working Paper Series qt9v30m3n9, Institute of Transportation Studies, UC Davis.
    6. Delucchi, Mark, 2005. "AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM," Institute of Transportation Studies, Working Paper Series qt4vd6k48v, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    2. Husain, Shaiara & Sohag, Kazi & Wu, Yanrui, 2022. "The response of green energy and technology investment to climate policy uncertainty: An application of twin transitions strategy," Technology in Society, Elsevier, vol. 71(C).
    3. Alves, Joana Duarte Ouro & Faria, Weslem Rodrigues, 2024. "Reserves, well drilling and production: Assessing the optimal trajectory of oil extraction for Brazil," Resources Policy, Elsevier, vol. 88(C).
    4. Renaud Coulomb & Fanny Henriet, 2010. "Carbon price and optimal extraction of a polluting fossil fuel with restricted carbon capture," PSE Working Papers halshs-00564852, HAL.
    5. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
    6. Chakravorty, Ujjayant & Magné, Bertrand & Moreaux, Michel, 2006. "Can Nuclear Power solve the Global Warming Problem?," IDEI Working Papers 381, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    8. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    9. Acquah-Andoh, Elijah & Putra, Herdi A. & Ifelebuegu, Augustine O. & Owusu, Andrews, 2019. "Coalbed methane development in Indonesia: Design and economic analysis of upstream petroleum fiscal policy," Energy Policy, Elsevier, vol. 131(C), pages 155-167.
    10. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    11. Majah-Leah V. Ravago, 2023. "The Nature and Causes of High Philippine Electricity Price and Potential Remedies," Department of Economics, Ateneo de Manila University, Working Paper Series 202301, Department of Economics, Ateneo de Manila University.
    12. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    13. Ujjayant Chakravorty & Marie‐Hélène Hubert & Michel Moreaux & Linda Nøstbakken, 2017. "Long‐Run Impact of Biofuels on Food Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 733-767, July.
    14. Roumasset James & Wada Christopher A, 2011. "Ordering Renewable Resources: Groundwater, Recycling, and Desalination," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, May.
    15. Xabadia, Angels & Goetz, Renan U. & Zilberman, David, 2006. "Control of accumulating stock pollution by heterogeneous producers," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1105-1130, July.
    16. Langer, Lissy & Huppmann, Daniel & Holz, Franziska, 2016. "Lifting the US crude oil export ban: A numerical partial equilibrium analysis," Energy Policy, Elsevier, vol. 97(C), pages 258-266.
    17. Ted Temzelides & Borghan Narajabad & Bernardino Adao, 2016. "Renewable Technology Adoption and the Macroeconomy," 2016 Meeting Papers 6, Society for Economic Dynamics.
    18. Bob van der Zwaan & Reyer Gerlagh, 2004. "Climate Uncertainty and the Necessity to Transform Global Energy Supply," Working Papers 2004.95, Fondazione Eni Enrico Mattei.
    19. Moreno-Cruz, Juan & Taylor, M. Scott, 2017. "An energy-centric theory of agglomeration," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 153-172.
    20. Peter R. Hartley & Kenneth B. Medlock III, 2017. "The Valley of Death for New Energy Technologies," The Energy Journal, , vol. 38(3), pages 33-62, May.

    More about this item

    Keywords

    Social and Behavioral Sciences; oil; marginal costs; producer surplus; gasoline; wealth transfer; drilling costs; exploratory wells; development wells;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt0591r5x3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.