IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v46y2015i1p55-63.html
   My bibliography  Save this article

Earnings Per Share Forecast Using Extracted Rules from Trained Neural Network by Genetic Algorithm

Author

Listed:
  • Hossein Etemadi
  • Ahmad Ahmadpour
  • Seyed Moshashaei

Abstract

Earnings per share (EPS) is one of the main financial ratio that is considering by managers, investors and financial analysts. It is usually using in investment decisions, profitability evaluation, profit risk, and stock price estimation. Therefore, EPS forecasting is a valuable and attractive task for managers and investors. This paper examines EPS forecasting using multi-layer perceptron (MLP) neural network and rule extraction from neural network by genetic algorithm technique and determined an optimal model between MLP and RE technique by evaluating their forecasting accuracy. For this purpose, we use 990 listed firms in Tehran Stock Exchange in the period of 2000–2010. The results show that the RE technique is significantly more accurate than the MLP model. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Hossein Etemadi & Ahmad Ahmadpour & Seyed Moshashaei, 2015. "Earnings Per Share Forecast Using Extracted Rules from Trained Neural Network by Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 55-63, June.
  • Handle: RePEc:kap:compec:v:46:y:2015:i:1:p:55-63
    DOI: 10.1007/s10614-014-9455-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-014-9455-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-014-9455-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    2. Huang, Sun-Jen & Chiu, Nan-Hsing & Chen, Li-Wei, 2008. "Integration of the grey relational analysis with genetic algorithm for software effort estimation," European Journal of Operational Research, Elsevier, vol. 188(3), pages 898-909, August.
    3. Landajo, Manuel & de Andres, Javier & Lorca, Pedro, 2007. "Robust neural modeling for the cross-sectional analysis of accounting information," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1232-1252, March.
    4. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    5. Gonedes, Nj, 1974. "Capital Market Equilibrium And Annual Accounting Numbers - Empirical-Evidence," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 26-62.
    6. Finger, Ca, 1994. "The Ability Of Earnings To Predict Future Earnings And Cash Flow," Journal of Accounting Research, Wiley Blackwell, vol. 32(2), pages 210-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    2. Gholamhossein Mahdavi & Abbas Ali Daryaei, 2016. "Attitude toward auditing, marketing and corporate governance (An examination based in Parsons’ social action theory)," International Journal of Corporate Social Responsibility, Springer, vol. 1(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebadi Jalal, Mona & Hosseini, Monireh & Karlsson, Stefan, 2016. "Forecasting incoming call volumes in call centers with recurrent Neural Networks," Journal of Business Research, Elsevier, vol. 69(11), pages 4811-4814.
    2. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    3. Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
    4. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    5. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
    6. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
    7. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    8. Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.
    9. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.
    10. Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
    11. Takashi Obinata, 2002. "Concept and Relevance of Income," CIRJE F-Series CIRJE-F-171, CIRJE, Faculty of Economics, University of Tokyo.
    12. Saoussen Boujelben & Hela Khemakhem-Feki & Ahmad Alqatan, 2020. "Real earnings management and the relevance of operating cash flows: A study of french listed firms," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(4), pages 218-229, December.
    13. Dreher, Sandra & Eichfelder, Sebastian & Noth, Felix, 2022. "Does IFRS information on tax loss carryforwards and negative performance improve predictions of earnings and cash flows?," arqus Discussion Papers in Quantitative Tax Research 276, arqus - Arbeitskreis Quantitative Steuerlehre.
    14. Dreher, Sandra & Eichfelder, Sebastian & Noth, Felix, 2017. "Predicting earnings and cash flows: The information content of losses and tax loss carryforwards," IWH Discussion Papers 30/2017, Halle Institute for Economic Research (IWH).
    15. Pawel Rymarczyk & Piotr Golabek & Sylwia Skrzypek - Ahmed & Magdalena Rzemieniak, 2021. "Profiling and Segmenting Clients with the Use of Machine Learning Algorithms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 513-522.
    16. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    17. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    18. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    19. Saoussen Boujelben & Fedhila Hassouna, 2007. "La pertinence des cash-flows d'exploitation et de l'information financière traditionnelle dans la prévision de la détresse financière des entreprises tunisiennes," Post-Print halshs-00544881, HAL.
    20. Nihal Kargi & Harun Terzi, 1997. "Causal Relations Among ISE, Inflation, Interest Rates and Real Activity in Turkey: A VAR Analysis," Istanbul Stock Exchange Review, Research and Business Development Department, Borsa Istanbul, vol. 1(4), pages 27-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:46:y:2015:i:1:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.