IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11231-d1549244.html
   My bibliography  Save this article

Characteristics and Needs of Vietnamese Technical Intern Training Candidates (Care Workers) in Japan: A Qualitative Study

Author

Listed:
  • Koji Hara

    (School of Economics and Business Administration, Yokohama City University, Yokohama 236-0027, Japan)

  • Tomokazu Yamamura

    (School of Economics and Business Administration, Yokohama City University, Yokohama 236-0027, Japan
    Aijinkai Healthcare Corporation, Osaka 555-0034, Japan)

  • Ningyi Li

    (School of Economics and Business Administration, Yokohama City University, Yokohama 236-0027, Japan)

  • Pham Thu Huong

    (The Collaboration Center for Japanese Language & Culture, Hanoi University, Hanoi, Vietnam)

Abstract

In Japan, where the shortage of care workers poses a challenge to the sustainability of the long-term care system, foreign care workers play a crucial role. This study aimed to identify the needs and challenges of Vietnamese Technical Intern Training candidates, the largest group of foreign care workers, to facilitate program reforms and a more efficient recruitment process. A semi-structured interview survey was conducted with 27 candidates in Vietnam. Interview items included reasons for choosing the training program in Japan, the desired length of stay, expectations, and career advancement after returning home. Descriptive statistics and K-means clustering were used to analyze the data. Survey results showed that all participants independently decided to pursue care worker training in Japan; 44% had considered other countries; most wanted to stay in Japan for as long as possible; and 37% wanted to live in Japan permanently. The K-means method revealed three clusters: a Japanophile cluster (preferred Japan for its landscape, culture, and national character); a word-of-mouth cluster (influenced by personal referrals); and an intellectual cluster (influenced by Japan’s economic development and care levels). Our findings indicate that support for obtaining qualifications, Japanese language skills, and caregiving skills are important to secure the stability of foreign care workers. It is necessary to tailor recruitment, training, and support for each cluster.

Suggested Citation

  • Koji Hara & Tomokazu Yamamura & Ningyi Li & Pham Thu Huong, 2024. "Characteristics and Needs of Vietnamese Technical Intern Training Candidates (Care Workers) in Japan: A Qualitative Study," Sustainability, MDPI, vol. 16(24), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11231-:d:1549244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.
    2. Jeonghye Choi & David R. Bell & Leonard M. Lodish, 2012. "Traditional and IS-Enabled Customer Acquisition on the Internet," Management Science, INFORMS, vol. 58(4), pages 754-769, April.
    3. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    4. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    5. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    6. Thomas Fandrich & Christian Barrot & Jan U. Becker, 2014. "Deckungsbeitragsorientierte Steuerung von Targeting-Kampagnen," Schmalenbach Journal of Business Research, Springer, vol. 66(7), pages 601-624, November.
    7. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    8. Ebadi Jalal, Mona & Hosseini, Monireh & Karlsson, Stefan, 2016. "Forecasting incoming call volumes in call centers with recurrent Neural Networks," Journal of Business Research, Elsevier, vol. 69(11), pages 4811-4814.
    9. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    10. Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
    11. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    12. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    13. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    14. Lee, Hyoung-joo & Shin, Hyunjung & Hwang, Seong-seob & Cho, Sungzoon & MacLachlan, Douglas, 2010. "Semi-Supervised Response Modeling," Journal of Interactive Marketing, Elsevier, vol. 24(1), pages 42-54.
    15. Xiaoping Liu & Xiao-Bai Li & Sumit Sarkar, 2023. "Cost-Restricted Feature Selection for Data Acquisition," Management Science, INFORMS, vol. 69(7), pages 3976-3992, July.
    16. Hossein Etemadi & Ahmad Ahmadpour & Seyed Moshashaei, 2015. "Earnings Per Share Forecast Using Extracted Rules from Trained Neural Network by Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 55-63, June.
    17. Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
    18. Sangkil Moon & Gary J. Russell, 2008. "Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach," Management Science, INFORMS, vol. 54(1), pages 71-82, January.
    19. Yi‐Jen (Ian) Ho & Siyuan Liu & Jingchuan Pu & Dian Zhang, 2022. "Is it all about you or your driving? Designing IoT‐enabled risk assessments," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4205-4222, November.
    20. Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11231-:d:1549244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.