IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v065i05.html
   My bibliography  Save this article

The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood

Author

Listed:
  • Yee, Thomas W.
  • Stoklosa, Jakub
  • Huggins, Richard M.

Abstract

It is well known that using individual covariate information (such as body weight or gender) to model heterogeneity in capture-recapture (CR) experiments can greatly enhance inferences on the size of a closed population. Since individual covariates are only observable for captured individuals, complex conditional likelihood methods are usually required and these do not constitute a standard generalized linear model (GLM) family. Modern statistical techniques such as generalized additive models (GAMs), which allow a relaxing of the linearity assumptions on the covariates, are readily available for many standard GLM families. Fortunately, a natural statistical framework for maximizing conditional likelihoods is available in the Vector GLM and Vector GAM classes of models. We present several new R functions (implemented within the VGAM package) specifically developed to allow the incorporation of individual covariates in the analysis of closed population CR data using a GLM/GAM-like approach and the conditional likelihood. As a result, a wide variety of practical tools are now readily available in the VGAM object oriented framework. We discuss and demonstrate their advantages, features and flexibility using the new VGAM CR functions on several examples.

Suggested Citation

  • Yee, Thomas W. & Stoklosa, Jakub & Huggins, Richard M., 2015. "The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i05).
  • Handle: RePEc:jss:jstsof:v:065:i05
    DOI: http://hdl.handle.net/10.18637/jss.v065.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v065i05/v65i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v065i05/VGAM_0.9-8.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v065i05/v65i05.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v065i05/GAM_th_sims_prog.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v065.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    2. Richard Huggins & Wen‐Han Hwang, 2007. "Non‐parametric estimation of population size from capture–recapture data when the capture probability depends on a covariate," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 429-443, August.
    3. Baillargeon, Sophie & Rivest, Louis-Paul, 2007. "Rcapture: Loglinear Models for Capture-Recapture in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i05).
    4. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karavarsamis, N. & Huggins, R.M., 2019. "Two-stage approaches to the analysis of occupancy data II. The heterogeneous model and conditional likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 195-207.
    2. Jiajun Yan & Shitong Xie & Jeffrey A. Johnson & Eleanor Pullenayegum & Arto Ohinmaa & Stirling Bryan & Feng Xie, 2024. "Canada population norms for the EQ-5D-5L," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(1), pages 147-155, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Yukun Liu & Yan Fan & Han Geng, 2018. "Likelihood ratio confidence interval for the abundance under binomial detectability models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 549-568, July.
    2. Donald T McKnight & Day B Ligon, 2017. "Correcting for unequal catchability in sex ratio and population size estimates," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-13, August.
    3. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    4. Neil Stewart & Christoph Ungemach & Adam J. L. Harris & Daniel M. Bartels & Ben R. Newell & Gabriele Paolacci & Jesse Chandler, 2015. "The average laboratory samples a population of 7,300 Amazon Mechanical Turk workers," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 10(5), pages 479-491, September.
    5. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    6. Olivier Binette & Rebecca C. Steorts, 2022. "On the reliability of multiple systems estimation for the quantification of modern slavery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 640-676, April.
    7. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    8. repec:cup:judgdm:v:10:y:2015:i:5:p:479-491 is not listed on IDEAS
    9. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    10. Li, Haoqi & Lin, Huazhen & Yip, Paul S.F. & Li, Yuan, 2019. "Estimating population size of heterogeneous populations with large data sets and a large number of parameters," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 34-44.
    11. Jolynn Pek & Hao Wu, 2015. "Profile Likelihood-Based Confidence Intervals and Regions for Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1123-1145, December.
    12. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    13. Camille Le Roy & Camille Roux & Elisabeth Authier & Hugues Parrinello & Héloïse Bastide & Vincent Debat & Violaine Llaurens, 2021. "Convergent morphology and divergent phenology promote the coexistence of Morpho butterfly species," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    15. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    16. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    17. Neil Stewart & Christoph Ungemach & Adam J. L. Harris & Daniel M. Bartels & Ben R. Newell & Gabriele Paolacci & Jesse Chandler, "undated". "The Average Laboratory Samples a Population of 7,300 Amazon Mechanical Turk Workers," Mathematica Policy Research Reports f97b669c7b3e4c2ab95c9f805, Mathematica Policy Research.
    18. Daniel Manrique‐Vallier, 2016. "Bayesian population size estimation using Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 72(4), pages 1246-1254, December.
    19. Yauck, Mamadou & Rivest, Louis-Paul, 2019. "On the estimation of population sizes in capture–recapture experiments," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 512-524.
    20. Serena Scala & Francesca Ferrua & Luca Basso-Ricci & Francesca Dionisio & Maryam Omrani & Pamela Quaranta & Raisa Jofra Hernandez & Luca Del Core & Fabrizio Benedicenti & Ilaria Monti & Stefania Giann, 2023. "Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    21. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:065:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.