IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v133y2019icp195-207.html
   My bibliography  Save this article

Two-stage approaches to the analysis of occupancy data II. The heterogeneous model and conditional likelihood

Author

Listed:
  • Karavarsamis, N.
  • Huggins, R.M.

Abstract

Occupancy models involve both the probability a site is occupied and the probability occupancy is detected. The homogeneous occupancy model, where the occupancy and detection probabilities are the same at each site, admits an orthogonal parameter transformation that yields a two-stage process to calculate the maximum likelihood estimates so that it is not necessary to simultaneously estimate the occupancy and detection probabilities. The two-stage approach is examined for the heterogeneous occupancy model where the occupancy and detection probabilities now depend on covariates that may vary between sites and over time. There is no longer an orthogonal transformation but this approach effectively reduces the parameter space and allows fuller use of the R functionality. This permits use of existing vector generalised linear models methods to fit models for detection and allows the development of an iterative weighted least squares approach to fit models for occupancy. Efficiency is examined in a simulation study and the full maximum likelihood and two-stage approaches are compared on several data sets.11Software appears as annexes in the electronic version of this manuscript.

Suggested Citation

  • Karavarsamis, N. & Huggins, R.M., 2019. "Two-stage approaches to the analysis of occupancy data II. The heterogeneous model and conditional likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 195-207.
  • Handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:195-207
    DOI: 10.1016/j.csda.2018.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318302469
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    2. Yee, Thomas W., 2010. "The VGAM Package for Categorical Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i10).
    3. Yee, Thomas W. & Stoklosa, Jakub & Huggins, Richard M., 2015. "The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i05).
    4. Fiske, Ian & Chandler, Richard, 2011. "unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajun Yan & Shitong Xie & Jeffrey A. Johnson & Eleanor Pullenayegum & Arto Ohinmaa & Stirling Bryan & Feng Xie, 2024. "Canada population norms for the EQ-5D-5L," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(1), pages 147-155, February.
    2. D'Alberto, R. & Targetti, S. & Schaller, L. & Bartolini, F. & Eichhorn, T. & Haltia, E. & Harmanny, K. & Le Gloux, F. & Nikolov, D. & Runge, T. & Vergamini, D. & Viaggi, D., 2024. "A European perspective on acceptability of innovative agri-environment-climate contract solutions," Land Use Policy, Elsevier, vol. 141(C).
    3. Linda M. Haines, 2016. "A Note on the Royle–Nichols Model for Repeated Detection–Nondetection Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 588-598, September.
    4. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    5. Jiang, Xianfeng & Packer, Frank, 2019. "Credit ratings of Chinese firms by domestic and global agencies: Assessing the determinants and impact," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 178-193.
    6. Xi Liu & Yiqiao Jin & Yifan Yang & Xiaoqing Pan, 2023. "Properties and Estimations of a Multivariate Folded Normal Distribution," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    7. Michail Tsagris & Christina Beneki & Hossein Hassani, 2014. "On the Folded Normal Distribution," Mathematics, MDPI, vol. 2(1), pages 1-17, February.
    8. Shuai Shao & Göran Kauermann, 2020. "Understanding price elasticity for airline ancillary services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 74-82, February.
    9. Shin Ji-Hyung & Infante-Rivard Claire & McNeney Brad & Graham Jinko, 2014. "A data-smoothing approach to explore and test gene-environment interaction in case-parent trios," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 159-171, April.
    10. Thomas Yee & Alfian Hadi, 2014. "Row–column interaction models, with an R implementation," Computational Statistics, Springer, vol. 29(6), pages 1427-1445, December.
    11. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    12. Tracey N Johnson & Kristen Nasman & Zachary P Wallace & Lucretia E Olson & John R Squires & Ryan M Nielson & Patricia L Kennedy, 2019. "Survey design for broad-scale, territory-based occupancy monitoring of a raptor: Ferruginous hawk (Buteo regalis) as a case study," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    13. Goedkoop, F. & Dijkstra, J. & Flache, A., 2022. "A social network perspective on involvement in community energy initiatives: The role of direct and extended social ties to initiators," Energy Policy, Elsevier, vol. 171(C).
    14. repec:jss:jstsof:39:i12 is not listed on IDEAS
    15. Mahdi Rezapour & F. Richard Ferraro & Sabrina Alsubaiei, 2022. "Behavioral and emotional adaptations of obese and underweight students in response to the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    16. Gerhard Tutz & Moritz Berger, 2022. "Sparser Ordinal Regression Models Based on Parametric and Additive Location‐Shift Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 306-327, August.
    17. Moritz Berger & Thomas Welchowski & Steffen Schmitz-Valckenberg & Matthias Schmid, 2019. "A classification tree approach for the modeling of competing risks in discrete time," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 965-990, December.
    18. Gerhard Tutz & Moritz Berger, 2016. "Response Styles in Rating Scales," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 239-268, June.
    19. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    20. Marie-Therese Puth & Gerhard Tutz & Nils Heim & Eva Münster & Matthias Schmid & Moritz Berger, 2020. "Tree-based modeling of time-varying coefficients in discrete time-to-event models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 545-572, July.
    21. Christian Dudel, 2021. "Expanding the Markov Chain Toolbox: Distributions of Occupation Times and Waiting Times," Sociological Methods & Research, , vol. 50(1), pages 401-428, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:195-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.