IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v49y2024i4p565-594.html
   My bibliography  Save this article

Evaluating Psychometric Differences Between Fast Versus Slow Responses on Rating Scale Items

Author

Listed:
  • Nana Kim

    (University of Minnesota-Twin Cities)

  • Daniel M. Bolt

    (University of Wisconsin-Madison)

Abstract

Some previous studies suggest that response times (RTs) on rating scale items can be informative about the content trait, but a more recent study suggests they may also be reflective of response styles. The latter result raises questions about the possible consideration of RTs for content trait estimation, as response styles are generally viewed as nuisance dimensions in the measurement of noncognitive constructs. In this article, we extend previous work exploring the simultaneous relevance of content and response style traits on RTs in self-report rating scale measurement by examining psychometric differences related to fast versus slow item responses. Following a parallel methodology applied with cognitive measures, we provide empirical illustrations of how RTs appear to be simultaneously reflective of both content and response style traits. Our results demonstrate that respondents may exhibit different response behaviors for fast versus slow responses and that both the content trait and response styles are relevant to such heterogeneity. These findings suggest that using RTs as a basis for improving the estimation of noncognitive constructs likely requires simultaneously attending to the effects of response styles.

Suggested Citation

  • Nana Kim & Daniel M. Bolt, 2024. "Evaluating Psychometric Differences Between Fast Versus Slow Responses on Rating Scale Items," Journal of Educational and Behavioral Statistics, , vol. 49(4), pages 565-594, August.
  • Handle: RePEc:sae:jedbes:v:49:y:2024:i:4:p:565-594
    DOI: 10.3102/10769986231195260
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986231195260
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986231195260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    3. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
    4. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    5. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    6. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    7. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "Erratum to: A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 798-798, June.
    8. Weicong Lyu & Daniel M. Bolt & Samuel Westby, 2023. "Exploring the Effects of Item-Specific Factors in Sequential and IRTree Models," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 745-775, September.
    9. Wim Linden & Fanmin Guo, 2008. "Bayesian Procedures for Identifying Aberrant Response-Time Patterns in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 365-384, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    2. Fang Liu & Xiaojing Wang & Roeland Hancock & Ming-Hui Chen, 2022. "Bayesian Model Assessment for Jointly Modeling Multidimensional Response Data with Application to Computerized Testing," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1290-1317, December.
    3. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    4. Thorsten Meiser & Fabiola Reiber, 2023. "Item-Specific Factors in IRTree Models: When They Matter and When They Don’t," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 739-744, September.
    5. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    6. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    7. Olbrich, Lukas & Sakshaug, Joseph W. & Lewandowski, Eric, 2024. "Evaluating methods to prevent and detect inattentive respondents in web surveys," SocArXiv py9gz, Center for Open Science.
    8. Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
    9. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
    10. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    11. Anne Thissen-Roe & David Thissen, 2013. "A Two-Decision Model for Responses to Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 522-547, October.
    12. Gerhard Tutz & Moritz Berger, 2016. "Response Styles in Rating Scales," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 239-268, June.
    13. Brooke E. Magnus & David Thissen, 2017. "Item Response Modeling of Multivariate Count Data With Zero Inflation, Maximum Inflation, and Heaping," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 531-558, October.
    14. Wim Linden & Charles Lewis, 2015. "Bayesian Checks on Cheating on Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 689-706, September.
    15. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    16. Teruaki Kido & Yuko Yotsumoto & Masamichi J. Hayashi, 2025. "Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    18. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    19. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:49:y:2024:i:4:p:565-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.