IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v42y2017i4p467-490.html
   My bibliography  Save this article

Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model

Author

Listed:
  • Minjeong Jeon

    (University of California, Los Angeles)

  • Paul De Boeck

    (Ohio State University KU Leuven)

  • Wim van der Linden

    (Pacific Metrics)

Abstract

We present a novel application of a generalized item response tree model to investigate test takers’ answer change behavior. The model allows us to simultaneously model the observed patterns of the initial and final responses after an answer change as a function of a set of latent traits and item parameters. The proposed application is illustrated with large-scale mathematics test items. We also describe how the estimated results can be used to study the benefits of answer change and to further detect potential academic cheating.

Suggested Citation

  • Minjeong Jeon & Paul De Boeck & Wim van der Linden, 2017. "Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 467-490, August.
  • Handle: RePEc:sae:jedbes:v:42:y:2017:i:4:p:467-490
    DOI: 10.3102/1076998616688015
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998616688015
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998616688015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    2. Daniel Segall, 1996. "Multidimensional adaptive testing," Psychometrika, Springer;The Psychometric Society, vol. 61(2), pages 331-354, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés López-Sepulcre & Sebastiano De Bona & Janne K. Valkonen & Kate D.L. Umbers & Johanna Mappes, 2015. "Item Response Trees: a recommended method for analyzing categorical data in behavioral studies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1268-1273.
    2. Chun Wang & David J. Weiss & Zhuoran Shang, 2019. "Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 749-771, September.
    3. Lihua Yao, 2012. "Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 495-523, July.
    4. Ping Chen & Chun Wang, 2016. "A New Online Calibration Method for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 674-701, September.
    5. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    6. Daniel Segall, 2001. "General ability measurement: An application of multidimensional item response theory," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 79-97, March.
    7. Sandip Sinharay, 2015. "The Asymptotic Distribution of Ability Estimates," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 511-528, October.
    8. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    9. Dora Matzke & Conor Dolan & William Batchelder & Eric-Jan Wagenmakers, 2015. "Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 205-235, March.
    10. Thorsten Meiser & Fabiola Reiber, 2023. "Item-Specific Factors in IRTree Models: When They Matter and When They Don’t," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 739-744, September.
    11. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    12. Pascal Jordan, 2023. "On Reverse Shrinkage Effects and Shrinkage Overshoot," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 274-301, March.
    13. Chun Wang & Hua-Hua Chang, 2011. "Item Selection in Multidimensional Computerized Adaptive Testing—Gaining Information from Different Angles," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 363-384, July.
    14. Damon Bryant, 2005. "A note on item information in any direction for the multidimensional three-parameter logistic model," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 213-216, March.
    15. Bernard Veldkamp & Wim Linden, 2002. "Multidimensional adaptive testing with constraints on test content," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 575-588, December.
    16. Anne Thissen-Roe & David Thissen, 2013. "A Two-Decision Model for Responses to Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 522-547, October.
    17. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
    18. Quentin F. Gronau & Eric-Jan Wagenmakers & Daniel W. Heck & Dora Matzke, 2019. "A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 261-284, March.
    19. Matthew D. Finkelman & Giles Hooker & Zhen Wang, 2010. "Prevalence and Magnitude of Paradoxical Results in Multidimensional Item Response Theory," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 744-761, December.
    20. Mariagiulia Matteucci & Bernard Veldkamp, 2013. "On the use of MCMC computerized adaptive testing with empirical prior information to improve efficiency," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 243-267, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:42:y:2017:i:4:p:467-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.