IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v238y2018i3-4p353-369n5.html
   My bibliography  Save this article

Tail Risk in a Retail Payments System

Author

Listed:
  • Sabetti Leonard

    (Payments Canada, 350 Albert St #800, Ottawa, ON K1R 1A4)

  • Jacho-Chávez David T.

    (Department of Economics, Emory University, 1602 Fishburne Dr, Rich Bldg., 3rd Floor, Atlanta, GA 30322, USA)

  • Petrunia Robert

    (Department of Economics, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada)

  • Voia Marcel C.

    (Department of Economics, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6)

Abstract

In this paper, we study a credit risk (collateral) management scheme for the Canadian retail payment system designed to cover the exposure of a defaulting member. We estimate ex ante the size of a collateral pool large enough to cover exposure for a historical worst-case default scenario. The parameters of the distribution of the maxima are estimated using two main statistical approaches based on extreme value models: Block-Maxima for different window lengths (daily, weekly and monthly) and Peak-over-Threshold. Our statistical model implies that the largest daily net debit position across participants exceeds roughly $1.5 billion once a year. Despite relying on extreme-value theory, the out of sample forecasts may still underestimate an actual exposure given the absence of observed data on defaults and financial stress in Canada. Our results are informative for optimal collateral management and system design of pre-funded retail-payment schemes.

Suggested Citation

  • Sabetti Leonard & Jacho-Chávez David T. & Petrunia Robert & Voia Marcel C., 2018. "Tail Risk in a Retail Payments System," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 238(3-4), pages 353-369, July.
  • Handle: RePEc:jns:jbstat:v:238:y:2018:i:3-4:p:353-369:n:5
    DOI: 10.1515/jbnst-2018-0024
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2018-0024
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2018-0024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    2. Héctor Pérez Saiz & Gabriel Xerri, 2016. "Credit Risk and Collateral Demand in a Retail Payment System," Discussion Papers 16-16, Bank of Canada.
    3. Danielsson, Jon & Zhou, Chen, 2015. "Why risk is so hard to measure," LSE Research Online Documents on Economics 62002, London School of Economics and Political Science, LSE Library.
    4. Younes Bensalah, 2000. "Steps in Applying Extreme Value Theory to Finance: A Review," Staff Working Papers 00-20, Bank of Canada.
    5. Huynh, Kim P. & Jacho-Chávez, David T. & Petrunia, Robert J. & Voia, Marcel, 2011. "Functional Principal Component Analysis of Density Families With Categorical and Continuous Data on Canadian Entrant Manufacturing Firms," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 858-878.
    6. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    7. Michael Tompkins & Ariel Olivares, 2016. "Clearing and Settlement Systems from Around the World: A Qualitative Analysis," Discussion Papers 16-14, Bank of Canada.
    8. John Galbraith & Serguei Zernov, 2009. "Extreme dependence in the NASDAQ and S&P 500 composite indexes," Applied Financial Economics, Taylor & Francis Journals, vol. 19(13), pages 1019-1028.
    9. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    10. John W. Galbraith & Greg Tkacz, 2013. "Analyzing Economic Effects of September 11 and Other Extreme Events Using Debit and Payments System Data," Canadian Public Policy, University of Toronto Press, vol. 39(1), pages 119-134, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixon Jay & Petrunia Robert & Rollin Anne-Marie, 2018. "Studying Firm Growth Distributions with a Large Administrative Employment Database," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 238(3-4), pages 189-221, July.
    2. Gustavo Canavire-Bacarreza & Luis C. Carvajal-Osorio, 2020. "Two Stories of Wage Dynamics in Latin America: Different Policies, Different Outcomes," Journal of Labor Research, Springer, vol. 41(1), pages 128-168, June.
    3. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    4. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    5. Mei-Ling Tang & Trung K. Do, 2019. "In search of robust methods for multi-currency portfolio construction by value at risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(1), pages 107-126, March.
    6. de Araújo, André da Silva & Garcia, Maria Teresa Medeiros, 2013. "Risk contagion in the north-western and southern European stock markets," Journal of Economics and Business, Elsevier, vol. 69(C), pages 1-34.
    7. Ryohei Kawata & Masaaki Kijima, 2007. "Value-at-risk in a market subject to regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 609-619.
    8. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    9. Marios Nerouppos & David Saunders & Costas Xiouros & Stavros A. Zenios, 2006. "Risk Management in Emerging Markets: Practical Methodologies and Empirical Tests," Multinational Finance Journal, Multinational Finance Journal, vol. 10(3-4), pages 179-221, September.
    10. Héctor Pérez Saiz & Siddharth Untawala & Gabriel Xerri, 2018. "A Calibrated Model of Intraday Settlement," Discussion Papers 18-3, Bank of Canada.
    11. Jon Danielsson & Kevin R. James & Marcela Valenzuela & Ilknur Zer, 2016. "Can We Prove a Bank Guilty of Creating Systemic Risk? A Minority Report," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 795-812, June.
    12. Christophe HURLIN & Sessi TOKPAVI, 2007. "Une évaluation des procédures de Backtesting," LEO Working Papers / DR LEO 1716, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    13. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    14. Pavol Krasnovský, 2015. "Estimating the Value-at-Risk from High-frequency Data," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2015(2), pages 5-11.
    15. Biswajit Patra & Puja Padhi, 2015. "Backtesting of Value at Risk Methodology: Analysis of Banking Shares in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 9(3), pages 254-277, August.
    16. Vasiliki D. Skintzi & Spyros Xanthopoulos-Sisinis, 2007. "Evaluation of correlation forecasting models for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 497-526.
    17. Nupur Moni Das & Bhabani Sankar Rout & Yashmin Khatun, 2023. "Does G7 Engross the Shock of COVID 19: An Assessment with Market Volatility?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(4), pages 795-816, December.
    18. Alex YiHou Huang, 2010. "An optimization process in Value‐at‐Risk estimation," Review of Financial Economics, John Wiley & Sons, vol. 19(3), pages 109-116, August.
    19. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
    20. F. Cipollini & G.M. Gallo & A. Palandri, 2023. "Modeling and evaluating conditional quantile dynamics in VaR forecasts," Working Paper CRENoS 202308, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:238:y:2018:i:3-4:p:353-369:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.