IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2010-07.html
   My bibliography  Save this paper

Endogenizing Model Risk to Quantile Estimates

Author

Listed:
  • Carol Alexander

    (ICMA Centre, Henley Business School, University of Reading)

  • Jose Maria Sarabia

    (Department of Economics, University of Cantabria, Spain)

Abstract

We quantify and endogenize the model risk associated with quantile estimates using a maximum entropy distribution (MED) as benchmark. Moment-based MEDs cannot have heavy tails, however generalized beta generated distributions have attractive properties for popular applications of quantiles. These are MEDs under three simple constraints on the parameters that explicitly control tail weight and peakness. Model risk arises because analysts are constrained to use a model distribution that is not the MED. Then the model's alpha quantile differs from the alpha quantile of the MED so the tail probability under the MED associated with the model's alpha quantile is not alpha, it is a random variable. Model risk is endogenized by parameterizing the uncertainty about this random variable, whence the model's alpha quantile becomes a generated random variable. To obtain a point model-risk-adjusted quantile, the generated distribution is used to adjust the model's alpha quantile for any systematic bias and uncertainty due to model risk. An illustration based on Value-at-Risk (VaR) computes a model-risk-adjusted VaR for risk capital reserves which encompass both portfolio and VaR model risk.

Suggested Citation

  • Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2010-07
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/files/discussion-papers/dp201007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Sung Y. & Bera, Anil K., 2009. "Maximum entropy autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 150(2), pages 219-230, June.
    2. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    3. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    4. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    5. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    6. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    7. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    8. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    9. Katerina Simons, 1997. "Model error," New England Economic Review, Federal Reserve Bank of Boston, issue Nov, pages 17-28.
    10. Chan, Felix, 2009. "Modelling time-varying higher moments with maximum entropy density," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2767-2778.
    11. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    12. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    13. Kato, Toshiyasu & Yoshiba, Toshinao, 2000. "Model Risk and Its Control," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 129-157, December.
    14. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    15. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    16. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    17. Hull, John & Suo, Wulin, 2002. "A Methodology for Assessing Model Risk and its Application to the Implied Volatility Function Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 297-318, June.
    18. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    19. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    20. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    21. Cairns, Andrew J. G., 2000. "A discussion of parameter and model uncertainty in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 313-330, December.
    22. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    23. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    24. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    25. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    26. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    27. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    28. Denis Talay & Ziyu Zheng, 2002. "Worst case model risk management," Finance and Stochastics, Springer, vol. 6(4), pages 517-537.
    29. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    30. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    31. Unknown, 2001. "Index of Volume 45," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(4), pages 1-6.
    32. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    33. Ebrahimi, Nader & Maasoumi, Esfandiar & Soofi, Ehsan S., 1999. "Ordering univariate distributions by entropy and variance," Journal of Econometrics, Elsevier, vol. 90(2), pages 317-336, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    2. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, October.
    3. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    4. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    5. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    6. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    7. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    8. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    9. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    10. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    11. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    12. Christophe Boucher & Gregory Jannin & Patrick Kouontchou & Bertrand Maillet, 2013. "An Economic Evaluation of Model Risk in Long-term Asset Allocations," Review of International Economics, Wiley Blackwell, vol. 21(3), pages 475-491, August.
    13. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    14. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    15. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    16. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    17. Timotheos Angelidis & Alexandros Benos, 2008. "Value-at-Risk for Greek Stocks," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 67-104, March-Jun.
    18. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    19. Christophe Boucher & Benjamin Hamidi & Patrick Kouontchou & Bertrand Maillet, 2012. "Une évaluation économique du risque de modèle pour les investisseurs de long terme," Revue économique, Presses de Sciences-Po, vol. 63(3), pages 591-600.
    20. Kamila Sommer, 2014. "Fertility Choice in a Life Cycle Model with Idiosyncratic Uninsurable Earnings Risk," Finance and Economics Discussion Series 2014-32, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    Quantile risk measures; model risk; maximum entropy; generalized beta normal (GBN) distributions; generalized beta generated (GBG) distributions; Value-at-Risk (VaR); risk capital; S&P 500 index; GARCH; RiskMetrics;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2010-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.