IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2016-85-3.html
   My bibliography  Save this article

The Explanation of Social Conventions by Melioration Learning

Author

Abstract

In line with previous research, the evolution of social conventions is explored by n-way coordination games. A convention is said to be established if decisions of all actors synchronise over time. In contrast to the earlier studies, an empirically well-grounded process of reinforcement learning is used as behavioural assumption. The model is called melioration learning. It is shown by agent-based simulations that melioration enables actors to establish a convention. Besides the payoffs of the coordination game, the network structure of interactions affects actors' ability to coordinate their choices and the speed of convergence. The results of melioration learning are compared to predictions of the Roth-Erev model.

Suggested Citation

  • Johannes Zschache, 2017. "The Explanation of Social Conventions by Melioration Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(3), pages 1-1.
  • Handle: RePEc:jas:jasssj:2016-85-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/20/3/1/1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonides, Gerrit & Maital, Shlomo, 2002. "Effects of feedback and educational training on maximization in choice tasks: experimental-game evidence," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 31(2), pages 155-165.
    2. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    3. Brenner, Thomas & Witt, Ulrich, 2003. "Melioration learning in games with constant and frequency-dependent pay-offs," Journal of Economic Behavior & Organization, Elsevier, vol. 50(4), pages 429-448, April.
    4. Babichenko, Yakov, 2012. "Completely uncoupled dynamics and Nash equilibria," Games and Economic Behavior, Elsevier, vol. 76(1), pages 1-14.
    5. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Nax, Heinrich H., 2015. "Equity dynamics in bargaining without information exchange," LSE Research Online Documents on Economics 65426, London School of Economics and Political Science, LSE Library.
    4. Heinrich Nax, 2015. "Equity dynamics in bargaining without information exchange," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 1011-1026, November.
    5. H Peyton Young & Jason R. Marden and Lucy Y. Pao, 2011. "Achieving Pareto Optimality Through Distributed Learning," Economics Series Working Papers 557, University of Oxford, Department of Economics.
    6. Ennio Bilancini & Leonardo Boncinelli, 2020. "The evolution of conventions under condition-dependent mistakes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 497-521, March.
    7. Bary Pradelski, 2019. "Control by social influence: durables vs. non-durables," Post-Print hal-03100218, HAL.
    8. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    9. Lahkar, Ratul, 2017. "Equilibrium selection in the stag hunt game under generalized reinforcement learning," Journal of Economic Behavior & Organization, Elsevier, vol. 138(C), pages 63-68.
    10. Babichenko, Yakov & Rubinstein, Aviad, 2022. "Communication complexity of approximate Nash equilibria," Games and Economic Behavior, Elsevier, vol. 134(C), pages 376-398.
    11. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    12. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    13. Foster, Dean P. & Hart, Sergiu, 2018. "Smooth calibration, leaky forecasts, finite recall, and Nash dynamics," Games and Economic Behavior, Elsevier, vol. 109(C), pages 271-293.
    14. Juan I Block & Drew Fudenberg & David K Levine, 2017. "Learning Dynamics Based on Social Comparisons," Levine's Working Paper Archive 786969000000001375, David K. Levine.
    15. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," LSE Research Online Documents on Economics 65422, London School of Economics and Political Science, LSE Library.
    16. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.
    17. Mäs, Michael & Nax, Heinrich H., 2016. "A behavioral study of “noise” in coordination games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 195-208.
    18. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    19. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    20. Rashida Hakim & Jason Milionis & Christos Papadimitriou & Georgios Piliouras, 2024. "Swim till You Sink: Computing the Limit of a Game," Papers 2408.11146, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2016-85-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.